已知x,y滿足
y-2≤0
x+3≥0
x-y-1≤0
y-2
x-4
的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=
y-2
x-4
,利用z的幾何意義,即可得到結(jié)論.
解答: 解:不等式組對應(yīng)的平面區(qū)域如圖:
設(shè)z=
y-2
x-4
,則z的幾何意義為P(x,y)到定點C(4,2)的斜率,
由圖象可知當點P位于B時,此時直線CB的斜率最小為0,
當點P位于A時,此時直線AC的斜率最大,
x=-3
x-y-1=0
,解得
x=-3
y=-4
,即A(-3,-4),
此時對應(yīng)的z=
-4-2
-3-4
=
6
7
,
故0≤z≤
6
7

故答案為:[0,
6
7
]
點評:本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義是解決本題的關(guān)鍵,要求熟練掌握斜率公式的計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥0
x-y≥0
0≤x≤3
,則z=x+y的最大值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C1的方程為
x=8+tcosα
y=16+tsinα
(t為參數(shù),α∈[0,π)且α為常數(shù)),曲線C2的極坐標方程為ρ=6cosθ+8sinθ,當曲線C1被曲線C2截得的線段長為
2
且0<α<
π
3
時,求常數(shù)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M、N分別是AD、BE的中點,將△ADE沿AE折起(D不在平面ABC內(nèi)).下列說法正確的是
 

①不論D折至何位置都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置都有MN∥AB;
④在折起過程中,一定存在某個位置,使EC⊥AD;
⑤在折起過程中,一定存在某個位置,使MN∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實數(shù)x∈[
1
3
,2]滿足2x>a-
2
x
,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,…,9這10個整數(shù)中任意取3個不同的數(shù)作為二次函數(shù)f(x)=ax2+bx+c的系數(shù),則使得
f(1)
2
∈Z的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2-x+1)10展開式中x3項的系數(shù)為( 。
A、-210B、210
C、30D、-30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是平面,m,n是直線,且m⊥α,則下列命題不正確的是( 。
A、若m∥n,則n⊥a
B、若n⊥α,則m∥n
C、若n∥α,則m⊥n
D、若m⊥n,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(2,1),B(1,-2),C(
3
5
,-
1
5
),動點P(a,b)滿足0≤
OP
OA
≤2,且0≤
OP
OB
≤2,則動點P到點C的距離小于
1
5
的概率為( 。
A、
π
20
B、1-
π
20
C、
19π
20
D、1-
19π
20

查看答案和解析>>

同步練習(xí)冊答案