已知α是平面,m,n是直線(xiàn),且m⊥α,則下列命題不正確的是(  )
A、若m∥n,則n⊥a
B、若n⊥α,則m∥n
C、若n∥α,則m⊥n
D、若m⊥n,則n∥α
考點(diǎn):空間中直線(xiàn)與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:由已知中m⊥α,結(jié)合線(xiàn)面垂直的第二判斷定理,可判斷A;根據(jù)線(xiàn)面垂直的性質(zhì)定理,可判斷B;根據(jù)線(xiàn)面平行的性質(zhì)定理及幾何特征,可判斷C;根據(jù)線(xiàn)面平行的位置關(guān)系,可判斷D.
解答: 解:∵m⊥α,若m∥n,由線(xiàn)面垂直的第二判斷定理可得:n⊥a,故A正確;
∵m⊥α,若n⊥α,由線(xiàn)面垂直的性質(zhì)定理可得:m∥n,故B正確;
若n∥α,則存在直線(xiàn)l?α,使n∥l,∵m⊥α,由線(xiàn)面垂直的定義可得m⊥l,則m⊥n,故C正確;
∵m⊥α,若m⊥n,則n∥α,或n?α,故D錯(cuò)誤
故選:D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是空間直線(xiàn)與平面之間的位置關(guān)系,熟練掌握空間線(xiàn)面關(guān)系,面面關(guān)系,線(xiàn)線(xiàn)關(guān)系的定義,幾何特征及性質(zhì)和判定方法是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax+2a,(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線(xiàn)y=f(x)與x軸有且只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
y-2≤0
x+3≥0
x-y-1≤0
y-2
x-4
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2x的圖象在點(diǎn)A(x1,f(x1))與點(diǎn)B(x2,f(x2))(x1<x2<0)處的切線(xiàn)互相垂直,則x2-x1的最小值為( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)由曲線(xiàn)y2=8x與直線(xiàn)y=2x-8圍成的封閉圖形的面積( 。
A、24B、36C、42D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a,b為異面直線(xiàn)”是指:
①a∩b=ϕ,且a與b不平行;
②a?平面α,b?平面β,且a∩b=ϕ;
③a?平面α,b?平面β,且α∩β=ϕ;
④a?平面α,b?平面α;
⑤不存在平面α,能使a?α且b?α成立.
上述結(jié)論中,正確的是(  )
A、①④⑤正確B、①⑤正確
C、②④正確D、①③④正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x2-
i
x
)n
展開(kāi)式中的第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-
3
14
,其中i為虛數(shù)單位,則展開(kāi)式的常數(shù)項(xiàng)為( 。
A、72B、-72i
C、45D、-45i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|log2(x-1)<2},N={x|a<x<6},且M∩N=(2,b),則a+b=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}滿(mǎn)足:an2-(n2+n-1)an-(n2+n)=0(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,且滿(mǎn)足b1=1,2Sn=1+bn(n∈N+).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=
(2n+1)bn
an
,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求證:T2n<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案