已知集合M={x|log2(x-1)<2},N={x|a<x<6},且M∩N=(2,b),則a+b=( 。
A、4B、5C、6D、7
考點:交集及其運算
專題:集合
分析:求出M中不等式的解集確定出M,根據(jù)M與N交集求出a與b的值,即可求出a+b的值.
解答: 解:由M中的不等式變形得:log2(x-1)<2=log24,即0<x-1<4,
解得:1<x<5,即M=(1,5),
∵N=(a,6),且M∩N=(2,b),
∴a=2,b=5,
則a+b=7.
故選:D.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文科)如圖,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M、N分別是AD、BE的中點,將△ADE沿AE折起(D不在平面ABC內).下列說法正確的是
 

①不論D折至何位置都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置都有MN∥AB;
④在折起過程中,一定存在某個位置,使EC⊥AD;
⑤在折起過程中,一定存在某個位置,使MN∥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是平面,m,n是直線,且m⊥α,則下列命題不正確的是( 。
A、若m∥n,則n⊥a
B、若n⊥α,則m∥n
C、若n∥α,則m⊥n
D、若m⊥n,則n∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別為△ABC內角A,B,C的對邊,且a,b,c成等比數(shù)列,且B=
π
3
,則
1
tanA
+
1
tanC
=( 。
A、
3
B、
3
2
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):①f(x)=sinx②f(x)=cosx③f(x)=e|x|④f(x)=|lnx|,則輸出的函數(shù)的個數(shù)為(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},則集合P的元素個數(shù)為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三點A(2,1),B(1,-2),C(
3
5
,-
1
5
),動點P(a,b)滿足0≤
OP
OA
≤2,且0≤
OP
OB
≤2,則動點P到點C的距離小于
1
5
的概率為(  )
A、
π
20
B、1-
π
20
C、
19π
20
D、1-
19π
20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足對于任意實數(shù)x∈R,均有f(x)+2f(-x)=ex+2(
1
e
x+x成立.
(1)求f(x)的解析式并求f(x)的最小值;
(2)證明:(
1
n
)n+(
2
n
)n+
+(
n
n
)n
e
e-1
.(n∈N+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別是F1,F(xiàn)2,過F1垂直于x軸的直線與E相交于A,B 兩點,且|AB|=3
2
,離心率為
2
2

(1)求橢圓E的方程;
(2)過焦點F2作與坐標軸不垂直的直線l交橢圓E于C,D兩點,點M是點C關于x軸的對稱點,在x軸上是否存在一個定點N使得D,M,N三點共線?若存在,求出點N坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案