已知是異面直線,直線∥直線,那么(  )
A.一定是異面直線B.一定是相交直線
C.不可能是平行直線D.不可能是相交直線
C

試題分析:可能異面,可能相交就是不可能平行。假設直線∥直線,因為直線∥直線,所以直線∥直線,這與已知是異面直線相矛盾,故假設不成立,即不可能是平行直線
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在正三棱錐P-ABC中,側(cè)棱長為3,底面邊長為2,E為BC的中點,

(1)求證:BC⊥PA
(2)求點C到平面PAB的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥面,為線段上的點.

(Ⅰ)證明:⊥面 ;
(Ⅱ)若的中點,求所成的角的正切值;
(Ⅲ)若滿足⊥面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,,,的中點,的中點,且為正三角形.

(1)求證:平面;
(2)若,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點.

(Ⅰ)求證:無論E點取在何處恒有
(Ⅱ)設,當平面EDC平面SBC時,求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所在平面,的直徑,上一點,,,給出下列結論:①; ②;③; ④平面平面 ⑤是直角三角形
其中正確的命題的序號是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一條線段夾在一個直二面角的兩個半平面內(nèi),它與兩個半平面所成的角都是,則這條線段與這個二面角的棱所成角的大小為          

查看答案和解析>>

同步練習冊答案