【題目】如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求平面與平面所成的較小二面角的大。
【答案】(1)見(jiàn)證明(2)見(jiàn)證明
【解析】
(1)利用三角形的中位線定理、平行四邊形的判定和性質(zhì)定理、線面平行的判定定理即可證明;(2)利用線面、面面垂直的判定和性質(zhì)定理即可證明;(3)延長(zhǎng)ED交AC延長(zhǎng)線于G′,連BG′,只要證明BG′⊥平面ABE即可得到∠ABE為所求的平面BDE與平面ABC所成二面角,在等腰直角三角形ABE中即可得到.
(1)如圖所示,取的中點(diǎn),連接、.
∵,,
∴.
又,
∴.
∴四邊形為平行四邊形.
故.
∵平面,平面,
∴平面.
(2)∵平面,∴.
又是正三角形,∴.
∴平面.
又∵,∴平面.
∴平面平面.
∵,,∴.
∴平面,∴.
(3)延長(zhǎng)交的延長(zhǎng)線于,連.
由,知,為的中點(diǎn),
又為的中點(diǎn),
∴.
又平面,,
∴平面.
∴為所求二面角的平面角.
在等腰直角三角形中,易求.
故所求二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一名同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對(duì)某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號(hào)下午14時(shí)的氣溫和當(dāng)天的飲料杯數(shù),得到如下資料:
該同學(xué)確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到估計(jì),數(shù)據(jù)與所宣稱的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)3杯,則認(rèn)為得到的線性回歸方程是理想的,請(qǐng)問(wèn)(2)所得線性回歸方程是否理想.
附:對(duì)于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計(jì)分別為: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么
(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?
(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?
(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?
并用數(shù)學(xué)歸納法證明你所得到的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知, , ,平面平面, , , 為中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn), 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), 為曲線在點(diǎn)處的切線.
(Ⅰ)求的方程.
(Ⅱ)當(dāng)時(shí),證明:除切點(diǎn)之外,曲線在直線的下方.
(Ⅲ)設(shè), , ,且滿足,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣3x
(1)若不等式f(x)≥m對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,當(dāng)m取最大值時(shí),設(shè)x>0,y>0且2x+4y+m=0,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com