【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么
(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?
(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?
(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?
并用數(shù)學(xué)歸納法證明你所得到的猜想.
【答案】 (1)25,16(2) n2(3)見解析
【解析】
根據(jù)1條、2條、3條、4條的特殊情況,發(fā)現(xiàn)規(guī)律,即可得到結(jié)論,然后用數(shù)學(xué)歸納法證明即可.
(1) 畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分,所以畫5條線段,彼此最多分割成25條線段,將圓最多分割成16部分.
(2) 圓內(nèi)兩兩相交的n條線段,彼此最多分割成n2條線段;
(3) 1條線段把圓分成f(1)=2部分,2條線段把圓分成f(2)=2+2部分,3條線段把圓分成f(3)=2+2+3部分,4條線段把圓分成f(4)=2+2+3+4部分,可猜想n條線段把圓分成f(n)=2+(2+3+4+5+6+7+8+…n)=1+(1+2+3+4+5+6+7+8+…n)=部分,證明如下,
證明:①當(dāng)n=1時(shí) 上式顯然成立
②假設(shè)當(dāng)n=k(k≥2)時(shí)成立,即f(k)=成立
則當(dāng)n=k+1時(shí),第k+1條直線與前k條直線相交有k個(gè)交點(diǎn),
所以k個(gè)交點(diǎn)將第k+1條線段分成k+1份,每一份將原來的部分又分成2份,
所以在原來的基礎(chǔ)上增加了k+1部分,
所以f(k+1)=f(k)+k+1=+k+1=
所以當(dāng)n=k+1時(shí)成立,綜合①②,所以猜想成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列前項(xiàng)和為,且.
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: , .
(1)設(shè),求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求平面與平面所成的較小二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若,確定函數(shù)的單調(diào)區(qū)間.
()若,且對于任意, 恒成立,求實(shí)數(shù)的取值范圍.
()求證:不等式對任意正整數(shù)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示.
(Ⅰ)寫出及圖中的值.
(Ⅱ)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(實(shí)數(shù)為常數(shù))
(1)當(dāng)時(shí),證明在上單調(diào)遞減;
(2)若,且為偶函數(shù),求實(shí)數(shù)的值;
(3)小金同學(xué)在求解函數(shù)的對稱中心時(shí),發(fā)現(xiàn)函數(shù)是一個(gè)復(fù)合函數(shù),設(shè),,則,顯然有對稱中心,設(shè)為,有反函數(shù),則的對稱中心為,請問小金的做法是否正確?如果正確,請給出證明,并直接寫出當(dāng)時(shí)的對稱中心;如果錯(cuò)誤,請舉出反例,并用正確的方法直接寫出當(dāng)時(shí)的對稱中心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com