已知實(shí)數(shù)x,y滿足
x+2y-2≥0
x≤2
y≤1
,則z=3x+4y-2的最大值為(  )
分析:作出不等式組表示的平面區(qū)域,先考慮c=3x+4y,則可得y=-
3
4
x+
1
4
c
,則
1
4
c
表示直線c=3x+4y在y軸上的截距,截距越大,c越大,此時(shí)z越大,結(jié)合圖形可求z的最大值
解答:解:作出不等式組表示的平面區(qū)域,如圖所示
先考慮c=3x+4y,當(dāng)c最大時(shí),z最大
∵y=-
3
4
x+
1
4
c
,
1
4
c
表示直線c=3x+4y在y軸上的截距,截距越大,c越大,此時(shí)z越大
x=2
y=1
可得B(2,1),此時(shí)c=10,zmax=8
故選A
點(diǎn)評:本題主要考查了線性規(guī)劃在求解目標(biāo)函數(shù)的最值中的應(yīng)用,解題的關(guān)鍵是利用目標(biāo)函數(shù)的幾何意義
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x2
a2
-
y2
b2
=1(a>0,b>0)
,則下列不等式中恒成立的是( 。
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1.
則z=2x+4y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥0
y≥0
x+y≤s
y+2x≤4
,當(dāng)2≤s≤3時(shí),目標(biāo)函數(shù)z=3x+2y的最大值函數(shù)f(s)的最小值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江一模)已知實(shí)數(shù)x,y滿足
x≥1
y≤2
x-y≤0
,則x2+y2的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案