【題目】設(shè)函數(shù)定義域?yàn)?/span>,對(duì)于區(qū)間,如果存在,,使得,則稱區(qū)間為函數(shù)的區(qū)間.
(Ⅰ)判斷是否是函數(shù)的區(qū)間;
(Ⅱ)若是函數(shù)(其中)的區(qū)間,求的取值范圍;
(Ⅲ)設(shè)為正實(shí)數(shù),若是函數(shù)的區(qū)間,求的取值范圍.
【答案】(Ⅰ)見證明;(Ⅱ) (Ⅲ)
【解析】
Ⅰ根據(jù)新定義,即可求出判斷,
Ⅱ根據(jù)新定義和對(duì)數(shù)函數(shù)的性質(zhì),即可求出a的取值范圍,
Ⅲ根據(jù)新定義和余弦函數(shù)的性質(zhì)可得存在k,,使得,再分類討論即可求出的取值范圍
(Ⅰ)不是函數(shù)的區(qū)間,理由如下:
因?yàn)?對(duì),,
所以 .
所以 均有,
即不存在,,使得.
所以不是函數(shù)的區(qū)間
(Ⅱ)由是函數(shù)(其中的區(qū)間,可知
存在,,使得.
所以 .
因?yàn)?
所以 ,即.
又因?yàn)?且,
所以 .
(Ⅲ)因?yàn)?是函數(shù)的區(qū)間,
所以 存在,,使得.
所以
所以 存在,使得
不妨設(shè). 又因?yàn)?,
所以 .
所以 .
即在區(qū)間內(nèi)存在兩個(gè)不同的偶數(shù).
①當(dāng)時(shí),區(qū)間的長(zhǎng)度,
所以 區(qū)間內(nèi)必存在兩個(gè)相鄰的偶數(shù),故符合題意.
②當(dāng)時(shí),有,
所以 .
(i)當(dāng)時(shí),有即.
所以 也符合題意.
(ii)當(dāng)時(shí),有即.
所以 符合題意.
(iii)當(dāng)時(shí),有即此式無(wú)解.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),寫出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3次.
(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.
(2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,錯(cuò)誤的是( )
A. 在中, 則
B. 在銳角中,不等式恒成立
C. 在中,若,則必是等腰直角三角形
D. 在中,若, ,則必是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,,,,,分別為、的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面,并求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的圓的圓心在軸的非負(fù)半軸上,且圓截直線所得弦長(zhǎng)為.
(1)求的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)且斜率為的直線交圓于、兩點(diǎn),若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
合格品 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
不合格品 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
合計(jì) | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,為實(shí)數(shù).
(1)若集合是空集,求實(shí)數(shù)的取值范圍;
(2)若集合是單元素集,求實(shí)數(shù)的值;
(3)若集合中元素個(gè)數(shù)為偶數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代社會(huì)對(duì)破譯密碼的難度要求越來(lái)越高,有一處密碼把英文的明文(真實(shí)名)按字母分解,其中英文a,b,c……,z這26個(gè)字母,依次對(duì)應(yīng)1,2,3……,26這26個(gè)正整數(shù).(見下表)
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
用如下變換公式:將明文轉(zhuǎn)換成密碼.如.即h變成q;再如:,即y變成m;按上述變換規(guī)則,若將明文譯成的密碼是gano,那么原來(lái)的明文是______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com