設(shè)a、b是兩個(gè)實(shí)數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a、b中至少有一個(gè)大于1”的條件是________(填序號(hào)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),如圖所示.
他們研究過圖中的1,5,12,22,…,由于這些數(shù)能夠表示成五角形,將其稱為五角形數(shù),若按此規(guī)律繼續(xù)下去,第n個(gè)五角形數(shù)an=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知{an}是等差數(shù)列,公差為d,首項(xiàng)a1=3,前n項(xiàng)和為Sn.令cn=(-1)nSn(n∈N*),{cn}的前20項(xiàng)和T20=330.數(shù)列{bn}滿足bn=2(a-2)dn-2+2n-1,a∈R.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn+1≤bn,n∈N*,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn滿足:Sn=an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列.
(2)令cn=log3(a1-1)+log3(a2-1)+…+log3(an-1),對(duì)任意n∈N*,是否存在正整數(shù)m,使++…+≥都成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
觀察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,則第n個(gè)式子是( )
A.n+(n+1)+(n+2)+…+(2n-1)=n2
B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
平面中的三角形和空間中的四面體有很多相類似的性質(zhì),例如在三角形中,(1)三角形兩邊之和大于第三邊;(2)三角形的面積S=×底×高;(3)三角形的中位線平行于第三邊且等于第三邊的;…
請(qǐng)類比上述性質(zhì),寫出空間中四面體的相關(guān)結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對(duì)于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時(shí),<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*且k≥1)時(shí),不等式成立,即<k+1,則當(dāng)n=k+1時(shí),=(k+1)+1,
所以當(dāng)n=k+1時(shí),不等式成立,則上述證法( )
A.過程全部正確
B.n=1驗(yàn)得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com