【題目】已知橢圓的左、右焦點分別為,圓經過橢圓的兩個焦點和兩個頂點,點在橢圓上,且.

(Ⅰ)求橢圓的方程和點的坐標;

(Ⅱ)過點的直線與圓相交于兩點,過點垂直的直線與橢圓相交于另一點,求的面積的取值范圍.

【答案】(Ⅰ)橢圓的方程為, P的坐標為.(Ⅱ).

【解析】分析:I)由題意計算可得, , 則橢圓的方程為, 結合幾何性質可得點P的坐標為.

II)由題意可知直線l2的斜率存在,設l2的方程為,與橢圓方程聯(lián)立可得, 由弦長公式可得結合幾何關系和勾股定理可得, 則面積函數(shù), 換元求解函數(shù)的值域可得△ABC的面積的取值范圍是

詳解:I)設,,

可知圓經過橢圓焦點和上下頂點,得,

由題意知,得,

,得

所以橢圓的方程為,

P的坐標為.

II)由過點P的直線l2與橢圓相交于兩點,知直線l2的斜率存在,

l2的方程為,由題意可知,

聯(lián)立橢圓方程,得

,則,得

所以

由直線l1l2垂直,可設l1的方程為,即

圓心l1的距離,又圓的半徑

所以,

,得,

,

,則,,

當且僅當時,取“=”,

所以△ABC的面積的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

1)若無零點,求實數(shù)的取值范圍;

2)若有兩個相異零點,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據(jù)統(tǒng)計某種有機蔬菜的產量與有機肥料的用量有關系,每個有機蔬菜大棚產量的增加量(百斤)與使用堆漚肥料(千克)之間對應數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且);

前8小時內的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據(jù),當購進17份比購進18份的利潤的期望值大時,求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求函數(shù)的零點個數(shù);

(2)若,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關于直線對稱;已知偶函數(shù)滿足,當時,;若函數(shù)有五個零點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關需要回答三個問題,其中前兩個問題回答正確各得分,回答不正確得分,第三個問題回答正確得分,回答不正確得分.如果一個挑戰(zhàn)者回答前兩個問題正確的概率都是,回答第三個問題正確的概率為,且各題回答正確與否相互之間沒有影響.若這位挑戰(zhàn)者回答這三個問題總分不低于分就算闖關成功.

(Ⅰ)求至少回答對一個問題的概率;

(Ⅱ)求這位挑戰(zhàn)者回答這三個問題的總得分X的分布列;

(Ⅲ)求這位挑戰(zhàn)者闖關成功的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位,再將所得圖象上每個點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到的圖象,則的可能取值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.

為了預測該地區(qū)2018年的環(huán)境基礎設施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型②

(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎設施投資額的預測值;

(2)你認為用哪個模型得到的預測值更可靠?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】偶函數(shù)定義域為,其導函數(shù)是,當時,有,則關于的不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案