【題目】甲、乙兩人在相同條件下各射擊次,每次中靶環(huán)數(shù)情況如圖所示:
(1)請?zhí)顚懴卤恚ㄏ葘懗鲇嬎氵^程再填表):
平均數(shù) | 方差 | 命中環(huán)及環(huán)以上的次數(shù) | |
甲 | |||
乙 |
(2)從下列三個不同的角度對這次測試結(jié)果進(jìn)行
①從平均數(shù)和方差相結(jié)合看(分析誰的成績更穩(wěn)定);
②從平均數(shù)和命中環(huán)及環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);
③從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).
【答案】(1)填表見解析;(2)①甲成績比乙穩(wěn)定;②乙成績比甲好些;③乙更有潛力.
【解析】
(1)由拆線圖,求出和,完成列聯(lián)表.
(2)①平均數(shù)相同,,從而甲成績比乙穩(wěn)定.
②平均數(shù)相同,命中9環(huán)及9環(huán)以上的次數(shù)甲比乙少,乙成績比甲好些.
③甲成績在平均數(shù)上下波動;而乙處于上升勢頭,從第三次以后就沒有比甲少的情況發(fā)生,乙更有潛力.
解:由列聯(lián)表中數(shù)據(jù),計算由題圖,知:
甲射擊10次中靶環(huán)數(shù)分別為9,5,7,8,7,6,8,6,7,7.
將它們由小到大排列為5,6,6,7,7,7,7,8,8,9.
乙射擊10次中靶環(huán)數(shù)分別為2,4,6,8,7,7,8,9,9,10.
將它們由小到大排列為2,4,6,7,7,8,8,9,9,10.
(1)(環(huán),
.
填表如下:
平均數(shù) | 方差 | 命中9環(huán)及9環(huán)以上的次數(shù) | |
甲 | 7 | 1.2 | 1 |
乙 | 7 | 5.4 | 3 |
(2)①平均數(shù)相同,,甲成績比乙穩(wěn)定.
②平均數(shù)相同,命中9環(huán)及9環(huán)以上的次數(shù)甲比乙少,乙成績比甲好些.
③甲成績在平均數(shù)上下波動;而乙處于上升勢頭,從第三次以后就沒有比甲少的情況發(fā)生,乙更有潛力.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè)是的極值點,求的值;
(Ⅱ)在(Ⅰ)的條件下,在定義域內(nèi)恒成立,求的取值范圍;
(Ⅲ)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)療器械公司在全國共有個銷售點,總公司每年會根據(jù)每個銷售點的年銷量進(jìn)行評價分析.規(guī)定每個銷售點的年銷售任務(wù)為一萬四千臺器械.根據(jù)這個銷售點的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務(wù)的銷售點有多少個?
(2)若用分層抽樣的方法從這個銷售點中抽取容量為的樣本,求該五組,,,,,(單位:千臺)中每組分別應(yīng)抽取的銷售點數(shù)量.
(3)在(2)的條件下,從該樣本中完成年銷售任務(wù)的銷售點中隨機(jī)選取個,求這兩個銷售點不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況.下列敘述中正確的是( )
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.甲車以80千米/小時的速度行駛1小時,消耗8升汽油
D.某城市機(jī)動車最高限速80千米/小時.相同條件下,在該市用乙車比用丙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,直線與坐標(biāo)軸的交點是橢圓的兩個頂點.
(1)求橢圓的方程;
(2)若是橢圓上的兩點,且滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點,圓:與軸的正半軸的交點是,過點的直線與圓交于不同的兩點.
(1)若直線與軸交于,且,求直線的方程;
(2)設(shè)直線,的斜率分別是,,求的值;
(3)設(shè)的中點為,點,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1, ,其中n∈N*.
(1)設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式.
(2)設(shè),數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得對于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細(xì)的評價信息進(jìn)行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認(rèn)為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?
(2)為了回饋用戶,公司通過向用戶隨機(jī)派送騎行券.用戶可以將騎行券用于騎行付費,也可以通過轉(zhuǎn)贈給好友.某用戶共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈給好友,求選取的張中至少有張是一元券的概率.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com