【題目】如圖,有兩條相交成60°角的直線xx′,yy′,交點是O,甲、乙分別在Ox,Oy上,起初甲離O點3 km,乙離O點1 km,后來兩人同時用每小時4 km的速度,甲沿xx′方向,乙沿y′y方向步行,問:
(1)用包含t的式子表示t小時后兩人的距離;
(2)什么時候兩人的距離最短?
【答案】(1)(2)在第15分鐘末,PQ最短,最短距離為2 km
【解析】
試題分析:(1)設(shè)兩人的距離為ykm根據(jù)題意分兩種情況討論即A與O不重合,A和O重合,分別利用三角函數(shù)求出AB即可得到y(tǒng)的解析式;(2)利用二次函數(shù)求最小值的方法求出y的最小值即可
試題解析:(1)設(shè)甲、乙兩人t小時后的位置分別是P、Q,
則AP=4t,BQ=4t
(Ⅰ)當(dāng)0≤t≤時,
PQ=
=
(Ⅱ)當(dāng)t>時,
PQ==
綜上(Ⅰ)、(Ⅱ)可知PQ==
(2)∵PQ2=48(t-)2+4 ∴當(dāng)t=時,(PQ)min=2
即在第15分鐘末,PQ最短,最短距離為2 km.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標(biāo)是( )
A. ﹣9B. ﹣3C. 9D. 15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某桔子園有平地和山地共120畝,現(xiàn)在要估計平均畝產(chǎn)量,按一定的比例用分層抽樣的方法共抽取10畝進(jìn)行調(diào)查.如果所抽山地是平地的2倍多1畝,則這個桔子園的平地與山地的畝數(shù)分別為________、________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B在AM上,D在AN上,且對角線MN過C點,已知|AB|=3米,|AD|=2米
(1)設(shè)AN的長為x米,用x表示矩形AMPN的面積?
(2)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最小值和最大值;
(2)當(dāng)時,討論函數(shù)的單調(diào)性;
(3)是否存在實數(shù),對任意的,且,都有恒成立,若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機抽取個進(jìn)行檢查,測得每個球的直徑(單位:),將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為,且稱直徑在內(nèi)的乒乓球為五星乒乓球,若這批乒乓球共有個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表,試估計這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=log3(2﹣x)的定義域是( )
A.[2,+∞)B.(2,+∞)C.(﹣∞,2)D.(﹣∞,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點,
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M點,若為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com