【題目】某學(xué)校團(tuán)委組織了文明出行,愛我中華的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,.

1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全此頻率分布直方圖;

2)求這次考試平均分的估計(jì)值;

3)若從成績(jī)?cè)?/span>的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.

【答案】1,頻率分布直方圖見解析;(2;(3

【解析】

試題分析:(1)先根據(jù)題目條件求出成績(jī)?cè)诔?/span>外的各組人數(shù),進(jìn)而可得出成績(jī)?cè)?/span>內(nèi)的學(xué)生人數(shù),并且可據(jù)此補(bǔ)全此頻率分布直方圖;(2)由題知考試平均分的估計(jì)值應(yīng)為直方圖中各個(gè)小矩形的面積與其對(duì)應(yīng)矩形的底邊中點(diǎn)的橫坐標(biāo)積的和;(3)可先求出成績(jī)?cè)?/span>的學(xué)生人數(shù),再利用古典概型即可求得成績(jī)?cè)谕环纸M區(qū)間的概率.

試題解析:(1)由題意得成績(jī)?cè)?/span>的學(xué)生人數(shù)為,在的學(xué)生人數(shù)為,在的學(xué)生人數(shù)為,在的學(xué)生人數(shù)為,

所以成績(jī)?cè)?/span>的學(xué)生人數(shù)為,頻率分布直方圖同(A)(1);

2),(3)同(A)(2),(3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設(shè)點(diǎn)a=﹣3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=﹣ 時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱臺(tái)ABCDA1B1C1D1中,上底面A1B1C1D1邊長(zhǎng)為1,下底面ABCD邊長(zhǎng)為2,側(cè)棱與底面所成的角為60°,則異面直線AD1B1C所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①是函數(shù)的極值點(diǎn);
②是函數(shù)的最小值點(diǎn);
③在處切線的斜率小于零;
④在區(qū)間上單調(diào)遞增。
則正確命題的序號(hào)是( )
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)x>1時(shí),g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點(diǎn),則“k=1”是“△OAB的面積為 ”的(
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案