已知二次函數(shù)f(x)=x2+2bx+c(b、c∈R).
(1)若f(x)≤0的解集為{x|-1≤x≤1},求實數(shù)b、c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個實數(shù)根分別在區(qū)間(-3,-2),(0,1)內(nèi),求實數(shù)b的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分16分)已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明:是上的偶函數(shù);
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍;
(3)已知正數(shù)滿足:存在,使得成立,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)已知在區(qū)間上單調(diào)遞減,求的取值范圍;
(2)存在實數(shù),使得當(dāng)時,恒成立,求的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,為正整數(shù),,,均為常數(shù),曲線在處的切線方程為.
(1)求,,的值;
(2)求函數(shù)的最大值;
(3)證明:對任意的都有.(為自然對數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知定義在R上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù),若方程f(x)=m(m>0)在區(qū)間上有四個不同的根,則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com