9.圓O:x2+y2=4上到直線3x+4y-5=0的距離為1的點的個數(shù)為( 。
A.1個B.2個C.3個D.4個

分析 由圓的方程找出圓心坐標和半徑r,利用點到直線的距離公式求出圓心到已知直線的距離d,由半徑r-d=1,從而得到該圓上到直線3x+4y-5=00的距離為1的點的個數(shù)即可.

解答 解:由圓的方程x2+y2=4,得到圓心坐標為(0,0),半徑r=2,
∴圓心到直線3x+4y-5=0的距離d=$\frac{5}{\sqrt{9+16}}$=1<2,
∴r-1=1,則圓上到直線3x+4y-5=0的距離為1的點的個數(shù)為是3.
故選C.

點評 此題考查了圓的標準方程,點到直線的距離公式,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是$\frac{1}{2}$外,其余每局比賽甲隊獲勝的概率都是$\frac{2}{3}$.假設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,已知圓$C:{(x+\sqrt{3})^2}+{y^2}=8,A(\sqrt{3},0)$,Q是圓上一動點,AQ的垂直平分線交直線CQ于點M,設(shè)點M的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點A作傾斜角為$\frac{π}{4}$的直線l交軌跡E于B,D兩點,求|BD|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知四邊形ABCD滿足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中點,將△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F(xiàn)為棱B1D上一點.
(1)若F為B1D的中點,求證:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=ex-e-x-2x,下列結(jié)論正確的是( 。
A.f(2x)min=f(0)B.f(2x)max=f(0)
C.f(2x)在(-∞,+∞)上遞減,無極值D.f(2x)在(-∞,+∞)上遞增,無極值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C:x2+y2-2x-24=0,直線ax-y+5=0(a>0)與圓交于A,B兩點.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)若弦AB的垂直平分線l過點P(-2,4),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓${C_1}:\frac{x^2}{2}+{y^2}=1$
(1)求證橢圓C1在其上一點A(x0,y0),A處的切線方程為x0x+2y0y-2=0.
(2)如圖,過橢圓C2:$\frac{x^2}{8}+\frac{y^2}{2}=1$上任意一點P作C1的兩條切線PM和PN,切點分別為M,N,當點P在橢圓C2上運動時,是否存在定圓恒與直線MN相切?若存在,求出圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.橢圓16x2+25y2=400的長軸長為(  )
A.5B.10C.25D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=lnx-3ax有兩個零點,則a的取值范圍是(0,$\frac{1}{3e}$).

查看答案和解析>>

同步練習冊答案