【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.

(1)證明:;

(2)求平面BEF與平面BCF所成銳二面角的余弦值.

【答案】(1)見解析 (2) .

【解析】

1)利用余弦定理得到,證明,得到平面ACEF得到答案.

2)分別以AB,AC,AF所在直線為軸,建立如圖所示的空間直角坐標系,計算平面BEF的一個法向量,平面BCF的一個法向量為,計算夾角得到答案.

(1)在平行四邊形ABCD中,,

中,由余弦定理得:,

,

,

所以

又四邊形ACEF為正方形,所以,

又平面平面ACEF,平面平面ACEF=AC

所以平面ABCD,所以,

,所以平面ACEF,平面ACEF

所以.

(2)AB,AC,AF兩兩垂直,分別以AB,AC,AF所在直線為軸,建立如圖所示的空間直角坐標系,則

設平面BEF的一個法向量,,

同理可得平面BCF的一個法向量為

設平面BEF與平面BCF所成銳二面角的平面角為,

.

平面BEF與平面BCF所成銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為菱形,,,E,F分別為的中點.

1)求證:平面;

2)點G是線段上一動點,若與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了學生的健康,對課間操活動做了如下規(guī)定:課間操時間若有霧霾則停止課間操,若無霧霾則組織課間操.預報得知,在未來一周從周一到周五的課間操時間出現(xiàn)霧霾的概率是:前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨立的.

(1)求未來5天至少一天停止課間操的概率;

(2)求未來5天組織課間操的天數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學隨機抽取部分高一學生調(diào)查其每日自主安排學習的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖,其中自主安排學習時間的范圍是,樣本數(shù)據(jù)分組為,,,,

)求直方圖中的值;

)從學校全體高一學生中任選名學生,這名學生中自主安排學習時間少于分鐘的人數(shù)記為,求的分布列和數(shù)學期望.(以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有5個命題:

①函數(shù)的最小正周期是

②終邊在軸上的角的集合是;

③在同一坐標系中,函數(shù)的圖象和函數(shù)的圖象有3個公共點;

④把函數(shù)的圖象向右平移得到的圖象;

⑤角為第一象限角的充要條件是

其中,真命題的編號是______(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且0,若過 A,Q,F(xiàn)2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與雙曲線相交于兩點,為坐標原點.

1)若,求實數(shù)的值;

2)是否存在實數(shù),使得兩點關于對稱?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權巡航,某時刻航行至處,此時測得其北偏東方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.

1)求此時該外國船只與島的距離;

2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方航行.為了將該船攔截在離海里的處(的正南方向),不讓其進入海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到,速度精確到海里/小時).

查看答案和解析>>

同步練習冊答案