精英家教網 > 高中數學 > 題目詳情

【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.

1)根據莖葉圖中的數據完成列聯表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

購買意愿強

購買意愿弱

合計

20-40

大于40

合計

2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數為,求的分布列和數學期望.

附:

6.635

0.100

0.050

0.010

0.001

2.706

3.841

10.828

【答案】1)列聯表見解析;沒有95%的把握認為市民是否購買該款手機與年齡有關. 2)分布列見解析;

【解析】

1)由莖葉圖能完成列聯表,由列聯表求出,從而得到沒有95%的把握認為市民是否購買該款手機與年齡有關.

2)購買意愿弱的市民共有20人,抽樣比例為,所以年齡在2040歲的抽取了2人,年齡大于40歲的抽取了3人,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.

1)由莖葉圖可得:

購買意愿強

購買意愿弱

合計

2040

20

8

28

大于40

10

12

22

合計

30

20

50

由列聯表可得:,

所以沒有95%的把握認為市民是否購買該款手機與年齡有關.

2)購買意愿弱的市民共有20人,抽樣比例為,所以年齡在2040歲的抽取了2人,年齡大于40歲的抽取了3人,則的可能取值為01,2,

,,

所以分布列為:

0

1

2

數學期望為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則(

A.在點F的運動過程中,存在EF//BC1

B.在點M的運動過程中,不存在B1MAE

C.四面體EMAC的體積為定值

D.四面體FA1C1B的體積不為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在它們的交點處具有相同的切線.

1)求的解析式;

2)若函數有兩個極值點,,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,則下列結論不正確的是(

A.函數在區(qū)間上單調遞增

B.函數在區(qū)間上單調遞減

C.函數的極大值是,極小值是

D.存在某一個實數的值,使得函數是偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在R上的奇函數,當時,,則下列命題正確的是(

A.時,

B.函數3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在平行四邊形中,,,,以對角線為折痕把折起,使點到圖2所示點的位置,使得.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】離心率為的橢圓經過點是坐標原點.

1)求橢圓的方程;

2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點,且?若存在,求出該圓的方程,并求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形,,邊的中點,點在線段.

1)證明:平面平面;

2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若直線與曲線交于兩點,求的面積.

查看答案和解析>>

同步練習冊答案