【題目】2019年,中國(guó)的國(guó)內(nèi)生產(chǎn)總值(GDP)已經(jīng)達(dá)到100億元人民幣,位居世界第二,這其中實(shí)體經(jīng)濟(jì)的貢獻(xiàn)功不可沒,實(shí)體經(jīng)濟(jì)組織一般按照市場(chǎng)化原則運(yùn)行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù)繪制了如下的散點(diǎn)圖
現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量關(guān)系進(jìn)行擬合,為此變換如下:令,則,即與也滿足線性關(guān)系,令,則,即也滿足線線關(guān)系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為與的相關(guān)系數(shù),其他參考數(shù)據(jù)如下(其中)
(1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關(guān)于的回歸方程;
(2)試計(jì)算與的相關(guān)系數(shù),并用相關(guān)系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個(gè)模型中哪一個(gè)擬合效果更好(精確到0.01)?
(3)根據(jù)(2)小題的選擇結(jié)果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場(chǎng)調(diào)研數(shù)據(jù),該產(chǎn)品定價(jià)為100元時(shí)得到簽到訂單的情況如下表:
訂單數(shù)(千件) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
概率 |
已知每件產(chǎn)品的原來(lái)成本為10元,試估算企業(yè)的利潤(rùn)是多少?(精確到1千元)
參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別是:相關(guān)系數(shù):
【答案】(1)指數(shù)模型回歸方程為,反比例函數(shù)回歸方程為;(2)反比例函數(shù);(3)612(千元)
【解析】
(1)對(duì)兩邊取對(duì)數(shù),可得,即,再把代入,可求得,然后令,則,結(jié)合參考公式即可求得,,從而求得回歸方程;
(2)利用參考公式求出相關(guān)系數(shù),再與(1)中的相比較,即可得解;
(3)設(shè)該企業(yè)的訂單期望為(千件),先利用錯(cuò)位相減法求出的值,再算出企業(yè)的利潤(rùn).
解:(1)因?yàn)?/span>,所以,,將代入上式,得,所以.
令,則,因?yàn)?/span>,所以,
則,
所以, 所以y關(guān)于x的回歸方程為.
綜上,指數(shù)模型回歸方程為,反比例函數(shù)回歸方程為;
(2)y與的相關(guān)系數(shù)為,
因?yàn)?/span>,所以用反比例函數(shù)模型擬合效果更好.
(3)設(shè)該企業(yè)的訂單期望為S(千件),
則
令 ①
②
②-①,得
化簡(jiǎn)得,所以
所以該企業(yè)的利潤(rùn)約為:(千元)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新能源汽車正以迅猛的勢(shì)頭發(fā)展,越來(lái)越多的企業(yè)不斷推出純電動(dòng)產(chǎn)品,某汽車集團(tuán)要對(duì)過去一年推出的四款純電動(dòng)車型中銷量較低的車型進(jìn)行產(chǎn)品更新?lián)Q代.為了了解這種車型的外觀設(shè)計(jì)是否需要改進(jìn),該集團(tuán)委托某調(diào)查機(jī)構(gòu)對(duì)大眾做問卷調(diào)查,并從參與調(diào)查的人群中抽取了人進(jìn)行抽樣分析,得到如下表格:(單位:人)
喜歡 | 不喜歡 | 合計(jì) | |
青年人 | |||
中年人 | |||
合計(jì) |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為大眾對(duì)型車外觀設(shè)計(jì)的喜歡與年齡有關(guān)?
(2)現(xiàn)從所抽取的中年人中按是否喜歡型車外觀設(shè)計(jì)利用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)選出人贈(zèng)送五折優(yōu)惠券,求選出的人中至少有人喜歡該集團(tuán)型車外觀設(shè)計(jì)的概率;
(3)將頻率視為概率,從所有參與調(diào)查的人群中隨機(jī)抽取人贈(zèng)送禮品,記其中喜歡型車外觀設(shè)計(jì)的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求滿足不等式組的的取值范圍;
(2)當(dāng)時(shí),不等式恒成立.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,,,,,面面,為的中點(diǎn).
(1)求證:;
(2)在線段上是否存在一點(diǎn),使得面?若存在,請(qǐng)證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線l和曲線于點(diǎn)A,B,求的最大值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四面體ABCD的每個(gè)頂點(diǎn)都在球O的表面上,AB是球O的一條直徑,且AC=2,BC=4,現(xiàn)有下面四個(gè)結(jié)論:
①球O的表面積為20π;②AC上存在一點(diǎn)M,使得AD∥BM;
③若AD=3,則BD=4;④四面體ABCD體積的最大值為.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.②④C.①④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某公司年月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷量 (萬(wàn)臺(tái))的具體數(shù)據(jù):
月 份 | ||||||||
研發(fā)費(fèi)用(百萬(wàn)元) | ||||||||
產(chǎn)品銷量(萬(wàn)臺(tái)) |
(1)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,用線性相關(guān)系數(shù)說(shuō)明與之間的相關(guān)性強(qiáng)弱程度
(2)求出與的線性回歸方程(系數(shù)精確到),并估計(jì)當(dāng)研發(fā)費(fèi)用為(百萬(wàn)元)時(shí)該產(chǎn)品的銷量.
參考數(shù)據(jù):,,,
參照公式:相關(guān)系數(shù),其回歸直線中的
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左焦點(diǎn)為.
(1)求橢圓的離心率;
(2)設(shè)為坐標(biāo)原點(diǎn),為直線上一點(diǎn),過作的垂線交橢圓于,.當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com