【題目】下表是某公司年月份研發(fā)費用(百萬元)和產(chǎn)品銷量 (萬臺)的具體數(shù)據(jù):
月 份 | ||||||||
研發(fā)費用(百萬元) | ||||||||
產(chǎn)品銷量(萬臺) |
(1)根據(jù)數(shù)據(jù)可知與之間存在線性相關關系,用線性相關系數(shù)說明與之間的相關性強弱程度
(2)求出與的線性回歸方程(系數(shù)精確到),并估計當研發(fā)費用為(百萬元)時該產(chǎn)品的銷量.
參考數(shù)據(jù):,,,
參照公式:相關系數(shù),其回歸直線中的
科目:高中數(shù)學 來源: 題型:
【題目】2019年,中國的國內(nèi)生產(chǎn)總值(GDP)已經(jīng)達到100億元人民幣,位居世界第二,這其中實體經(jīng)濟的貢獻功不可沒,實體經(jīng)濟組織一般按照市場化原則運行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關,經(jīng)統(tǒng)計得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù)繪制了如下的散點圖
現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量關系進行擬合,為此變換如下:令,則,即與也滿足線性關系,令,則,即也滿足線線關系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為與的相關系數(shù),其他參考數(shù)據(jù)如下(其中)
(1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關于的回歸方程;
(2)試計算與的相關系數(shù),并用相關系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個模型中哪一個擬合效果更好(精確到0.01)?
(3)根據(jù)(2)小題的選擇結(jié)果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場調(diào)研數(shù)據(jù),該產(chǎn)品定價為100元時得到簽到訂單的情況如下表:
訂單數(shù)(千件) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
概率 |
已知每件產(chǎn)品的原來成本為10元,試估算企業(yè)的利潤是多少?(精確到1千元)
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別是:相關系數(shù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率是,且以兩焦點間的線段為直徑的圓的內(nèi)接正方形面積是.
(1)求橢圓的方程;
(2)過左焦點的直線與相交于、兩點,直線,過作垂直于的直線與直線交于點,求的最小值和此時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,為橢圓的右焦點,且橢圓上的點到的距離的最小值為,過作直線交橢圓于兩點,點.
(1)求橢圓的方程;
(2)是否存在這樣的直線,使得以,為鄰邊的平行四邊形為矩形?若存在,求出直線的斜率;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為貫徹落實黨中央全面建設小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.現(xiàn)從這些尚未實現(xiàn)小康的家庭中隨機抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖,如圖.
注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(1)估計該地區(qū)尚未實現(xiàn)小康的家庭2018年家庭人均年純收入的平均值;
(2)2019年7月,為估計該地能否在2020年全面實現(xiàn)小康,收集了當?shù)刈钬毨У囊粦艏彝?/span>2019年1至6月的人均月純收入的數(shù)據(jù),作出散點圖如下.
根據(jù)相關性分析,發(fā)現(xiàn)其家庭人均月純收入與時間代碼之間具有較強的線性相關關系(記2019年1月、2月……分別為,,…,依此類推).試預測該家庭能否在2020年實現(xiàn)小康生活.
參考數(shù)據(jù):,.
參考公式:線性回歸方程中,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com