【題目】已知橢圓的離心率為,為橢圓的右焦點(diǎn),且橢圓上的點(diǎn)到的距離的最小值為,過(guò)作直線交橢圓于兩點(diǎn),點(diǎn).
(1)求橢圓的方程;
(2)是否存在這樣的直線,使得以,為鄰邊的平行四邊形為矩形?若存在,求出直線的斜率;若不存在,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四面體ABCD的每個(gè)頂點(diǎn)都在球O的表面上,AB是球O的一條直徑,且AC=2,BC=4,現(xiàn)有下面四個(gè)結(jié)論:
①球O的表面積為20π;②AC上存在一點(diǎn)M,使得AD∥BM;
③若AD=3,則BD=4;④四面體ABCD體積的最大值為.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.②④C.①④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某公司年月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷(xiāo)量 (萬(wàn)臺(tái))的具體數(shù)據(jù):
月 份 | ||||||||
研發(fā)費(fèi)用(百萬(wàn)元) | ||||||||
產(chǎn)品銷(xiāo)量(萬(wàn)臺(tái)) |
(1)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,用線性相關(guān)系數(shù)說(shuō)明與之間的相關(guān)性強(qiáng)弱程度
(2)求出與的線性回歸方程(系數(shù)精確到),并估計(jì)當(dāng)研發(fā)費(fèi)用為(百萬(wàn)元)時(shí)該產(chǎn)品的銷(xiāo)量.
參考數(shù)據(jù):,,,
參照公式:相關(guān)系數(shù),其回歸直線中的
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線的參數(shù)方程是(為參數(shù)),圓的極坐標(biāo)方程是.
(1)求圓的直角坐標(biāo)方程;
(2)過(guò)直線上的一點(diǎn)作一條傾斜角為的直線與圓交于、兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的參數(shù)方程;
(2)若直線與曲線相交于兩點(diǎn),且的面積為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是公差為的等差數(shù)列, 是公比為的等比數(shù)列,,正整數(shù)組.
(1)若,求的值;
(2)若數(shù)組中的三個(gè)數(shù)構(gòu)成公差大于的等差數(shù)列,且,求的最大值.
(3)若,試寫(xiě)出滿足條件的一個(gè)數(shù)組和對(duì)應(yīng)的通項(xiàng)公式.(注:本小問(wèn)不必寫(xiě)出解答過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左焦點(diǎn)為.
(1)求橢圓的離心率;
(2)設(shè)為坐標(biāo)原點(diǎn),為直線上一點(diǎn),過(guò)作的垂線交橢圓于,.當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,,是上一點(diǎn),,現(xiàn)沿將折起到的位置,并使平面,點(diǎn)在邊上,且滿足.
(1)證明:平面;
(2)若,,,求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com