【題目】已知橢圓的左焦點為.

1)求橢圓的離心率;

2)設(shè)為坐標原點,為直線上一點,過的垂線交橢圓于,.當四邊形是平行四邊形時,求四邊形的面積.

【答案】1;(2

【解析】

1)由題意可得,,,再結(jié)合求出,即可得橢圓的離心率;

2)設(shè),由求出直線方程,設(shè),,聯(lián)立直線與橢圓的方程并消元,由韋達定理得到根與系數(shù)的關(guān)系,由四邊形是平行四邊形得到,從而解出,即可計算四邊形的面積.

解:(1)由題意可得,,

又由,,解得,

橢圓的離心率.

2)設(shè)點的坐標為,

則直線的斜率,

時,直線的斜率,直線的方程是.

時,直線的方程是,也滿足方程,

設(shè),

將直線的方程與橢圓的方程聯(lián)立,得,

消去,得,

其判別式,

,,

四邊形是平行四邊形,

,即,

,

,

解得,

,

平行四邊形的面積為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年,中國的國內(nèi)生產(chǎn)總值(GDP)已經(jīng)達到100億元人民幣,位居世界第二,這其中實體經(jīng)濟的貢獻功不可沒,實體經(jīng)濟組織一般按照市場化原則運行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):

根據(jù)以上數(shù)據(jù)繪制了如下的散點圖

現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量關(guān)系進行擬合,為此變換如下:令,則,即也滿足線性關(guān)系,令,則,即也滿足線線關(guān)系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為的相關(guān)系數(shù),其他參考數(shù)據(jù)如下(其中

1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關(guān)于的回歸方程;

2)試計算的相關(guān)系數(shù),并用相關(guān)系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個模型中哪一個擬合效果更好(精確到0.01)?

3)根據(jù)(2)小題的選擇結(jié)果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場調(diào)研數(shù)據(jù),該產(chǎn)品定價為100元時得到簽到訂單的情況如下表:

訂單數(shù)(千件)

1

2

3

4

5

6

7

8

9

10

11

概率

已知每件產(chǎn)品的原來成本為10元,試估算企業(yè)的利潤是多少?(精確到1千元)

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別是:相關(guān)系數(shù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓的右焦點,且橢圓上的點到的距離的最小值為,過作直線交橢圓兩點,點.

1)求橢圓的方程;

2)是否存在這樣的直線,使得以,為鄰邊的平行四邊形為矩形?若存在,求出直線的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將120202020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C2的極坐標方程為ρ4sinθ.

1)求C1的直角坐標方程與C2的直角坐標方程;

2)已知射線C1交于O,P兩點,與C2交于O,Q兩點,且QOP的中點,求α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種新型嫁接巨豐葡萄,在新疆地區(qū)種植一般畝產(chǎn)不低于5千斤,產(chǎn)量高的達到上萬斤.受嫁接年限的影響,其產(chǎn)量一般逐年衰減,若在新疆地區(qū)平均畝產(chǎn)量低于5千斤,則從新嫁接.以下是新疆某地區(qū)從2014年開始嫁接后每年的平均畝產(chǎn)量y(單位:千斤)的數(shù)據(jù)表:

年份

2014

2015

2016

2017

2018

年份代號x

1

2

3

4

5

平均畝產(chǎn)量y

8.2

7.8

7.2

6.6

5.4

1)求y關(guān)于x的線性回歸方程;

2)利用(1)中的回歸直線方程,預計哪一年開始從新嫁接.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為貫徹落實黨中央全面建設(shè)小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.現(xiàn)從這些尚未實現(xiàn)小康的家庭中隨機抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖,如圖.

注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點值作代表.

1)估計該地區(qū)尚未實現(xiàn)小康的家庭2018年家庭人均年純收入的平均值;

220197月,為估計該地能否在2020年全面實現(xiàn)小康,收集了當?shù)刈钬毨У囊粦艏彝?/span>201916月的人均月純收入的數(shù)據(jù),作出散點圖如下.

根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時間代碼之間具有較強的線性相關(guān)關(guān)系(記20191月、2月……分別為,,…,依此類推).試預測該家庭能否在2020年實現(xiàn)小康生活.

參考數(shù)據(jù):,.

參考公式:線性回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)當時,若函數(shù)有兩個極值點,,求證:.

查看答案和解析>>

同步練習冊答案