【題目】已知兩點(diǎn)A(﹣1,2),B(m,3).且實(shí)數(shù)m∈[﹣ ﹣1, ﹣1],求直線AB的傾斜角α的取值范圍.

【答案】解:①當(dāng)m=﹣1時(shí),直線AB傾斜角α= ; ②當(dāng)m≠﹣1時(shí),直線AB的斜率為
∵m+1∈[﹣ , ],
∴k= ∈(﹣∞,﹣ ]∪[ ,+∞),
∴α∈[ , )∪( , ],
綜合①②知,直線AB的傾斜角α∈∈[ , ]
【解析】分類討論,當(dāng)m=﹣1時(shí),直線AB傾斜角α= ;②當(dāng)m≠﹣1時(shí),直線AB的斜率為 ,再利用正切函數(shù)的單調(diào)性求出傾斜角α的范圍
【考點(diǎn)精析】掌握直線的傾斜角是解答本題的根本,需要知道當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α=0°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)的矩形),被截取一角(即),, ,平面平面, .

(1)證明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面α過(guò)正方體ABCD﹣A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)求曲線焦點(diǎn)的極坐標(biāo),其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過(guò)點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過(guò)點(diǎn)A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過(guò)圓心C時(shí),求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的單調(diào)性(不要求證明);
(2)若有g(shù)(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案