【題目】在五面體中,四邊形是正方形,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意先證得四邊形為等腰梯形,再證得,于是.又可得到平面,于是,根據(jù)線面垂直的判定定理可得平面,于是可得所證結(jié)論.(2)建立空間直角坐標(biāo)系,求出直線的方向向量和平面的法向量,根據(jù)兩向量的夾角的余弦值可得所求線面角的正弦值.
(1)證明:由已知,且平面,平面,
所以平面.
又平面平面,
故.
又,
所以四邊形為等腰梯形.
因?yàn)?/span>,
所以,
所以,
所以.
因?yàn)?/span>,且,
所以平面.
所以.
又,
∴平面,
又平面,
所以.
(2)如圖,以為原點(diǎn),以分別為軸,建立空間直角坐標(biāo)系,
則,
∴,
設(shè)平面的法向量為,
由,得,
令,得.
設(shè)直線與平面所成的角為,
,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個(gè)結(jié)論:
①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號(hào)是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),a為實(shí)數(shù),
求函數(shù)的單調(diào)區(qū)間;
若存在實(shí)數(shù)a,使得對任意恒成立,求實(shí)數(shù)m的取值范圍.提示:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
(Ⅰ)求證:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱錐A-BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在圖1所示的梯形中,,于點(diǎn),且.將梯形沿對折,使平面平面,如圖2所示,連接,取的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線平面?若存在,試確定點(diǎn)的位置,并給予證明;若不存在,請說明理由;
(3)設(shè),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線以為焦點(diǎn),且過點(diǎn)
(1)求雙曲線與其漸近線的方程
(2)若斜率為1的直線與雙曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線:與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.與延長線交于點(diǎn),若的面積是面積的3倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).
求橢圓的方程;
過點(diǎn)且不與軸重合的直線與橢圓交于不同的兩點(diǎn),,過右焦點(diǎn)的直線分別交橢圓于點(diǎn),設(shè), ,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com