【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線:與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.與延長線交于點(diǎn),若的面積是面積的3倍,求的值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(I)根據(jù)離心率和弦長列方程組,解方程組求得的值,進(jìn)而求得橢圓方程.(II)設(shè)出兩點(diǎn)的坐標(biāo),利用的面積與面積的關(guān)系得到,利用向量結(jié)合平面向量共線的坐標(biāo)運(yùn)算,求得兩點(diǎn)橫坐標(biāo)的關(guān)系.分別聯(lián)立直線的方程與直線、直線的方程與橢圓的方程,根據(jù)兩點(diǎn)橫坐標(biāo)的關(guān)系列方程,解方程求得的值.
(Ⅰ)設(shè)橢圓的焦距為,由已知得∴,,
所以,橢圓的方程為.
(Ⅱ)設(shè)點(diǎn),,由題意,且
由的面積是面積的3倍,可得,所以
,從而,所以
,即.
易知直線的方程為,由消去,可得
由方程組消去,可得.
由,可得,
整理得,解得,或.
當(dāng)時,,符合題意;
當(dāng)時,,不符合題意,舍去.
所以,的值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是邊長為的正方形,底面,四棱錐的體積,是的中點(diǎn).
(1)求異面直線與所成角的大;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,長度為2的線段EF的兩端點(diǎn)E、F分別在兩坐標(biāo)軸上運(yùn)動.
(1)求線段EF的中點(diǎn)G的軌跡C的方程;
(2)設(shè)軌跡C與軸交于兩點(diǎn),P是軌跡C上異于的任意一點(diǎn),直線交直線于M點(diǎn),直線交直線于N點(diǎn),求證:以MN為直徑的圓C總過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線E: 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時, 的面積為,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為F1、F2,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)A為橢圓上一位于x軸上方的動點(diǎn),AF2的延長線與橢圓交于點(diǎn)B,AO的延長線與橢圓交于點(diǎn)C,求△ABC面積的最大值,并寫出取到最大值時直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:曲線表示雙曲線;:曲線表示焦點(diǎn)在軸上的橢圓.
(1)分別求出條件中的實(shí)數(shù)的取值范圍;
(2)甲同學(xué)認(rèn)為“是的充分條件”,乙同學(xué)認(rèn)為“是的必要條件”,請判斷兩位同學(xué)的說法是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,是中點(diǎn).
證明:平面;
線段上是否存在點(diǎn),使三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com