【題目】若存在,使得對任意恒成立,則函數(shù)上有下界,其中為函數(shù)的一個下界;若存在,使得對任意恒成立,則函數(shù)上有上界,其中為函數(shù)的一個上界.如果一個函數(shù)既有上界又有下界,那么稱該函數(shù)有界.下列四個結(jié)論:

1不是函數(shù)的一個下界;②函數(shù)有下界,無上界;

③函數(shù)有上界,無下界;④函數(shù)有界.

其中所有正確結(jié)論的編號為_______.

【答案】①②④ ;

【解析】

根據(jù)函數(shù)上界、下界及有界的概念,對①②③④四個命題逐一判斷即可.

,,故函數(shù)的下界為2,選項①正確;

,則,則當時,;

時,,

內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

所以有最小值m,使得內(nèi)成立,故該函數(shù)有下界,

時,,故該函數(shù)無上界,選項②正確;

,則,則當時,;

時,,時,,

內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

又函數(shù)處無意義,且時,,

時,,時,,,

綜上,該函數(shù)無上界,也無下界,選項③錯誤;

為周期函數(shù),且,時,,

該函數(shù)為振蕩函數(shù),函數(shù)有界,選項④正確.

故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是(

A.命題am2bm2,則ab的逆命題是真命題

B.命題存在x0R,x02x00”的否定是對任意的xR,x2x≤0”

C.命題pq為真命題,則命題p和命題q均為真命題

D.已知函數(shù)fx)在R上可導,則f'x0)=0fx0)為函數(shù)fx)的極值的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設,若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

1)當為自然對數(shù)的底數(shù)時,求的極小值;

2)討論函數(shù)零點的個數(shù);

3)若對任意,恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,且的圖象有一個斜率為1的公切線(為自然對數(shù)的底數(shù)).

1)求;

2)設函數(shù),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓0,稱圓心在原點,半徑為的圓是橢圓準圓.若橢圓的一個焦點為,其短軸上的一個端點到的距離為

1)求橢圓的方程和其準圓方程;

2)點是橢圓準圓上的一個動點,過點作直線,使得與橢圓都只有一個交點.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半正多面體(semiregular solid) 亦稱阿基米德多面體,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201912月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國范圍內(nèi)開始傳播,專家組認為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設每位密切接觸者不再接觸其他患者.

1)求一天內(nèi)被感染人數(shù)為的概率、的關系式和的數(shù)學期望;

2)該病毒在進入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間,設每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學期望記為.

i)求數(shù)列的通項公式,并證明數(shù)列為等比數(shù)列;

ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當取最大值時,計算此時所對應的值和此時對應的值,根據(jù)計算結(jié)果說明戴口罩的必要性.(取

(結(jié)果保留整數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學、生物、技術7門學科中任選3門.若同學甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學與全選化學是對立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學選了物理,乙同學選技術的概率是

D.乙、丙兩名同學都選物理的概率是

查看答案和解析>>

同步練習冊答案