方程x3-3x-m=0在[0,1]上有實數(shù)根,則實數(shù)m的取值范圍 .
【答案】分析:分離參數(shù)m=x3-3x,構(gòu)造函數(shù)f(x)=x3-3x,求導函數(shù)可得在[0,1]上,函數(shù)f(x)單調(diào)遞減,從而可求實數(shù)m的取值范圍.
解答:解:由題意,m=x3-3x,
令f(x)=x3-3x,求導函數(shù)可得f'(x)=3x2-3=3(x+1)(x-1)
∴在[0,1]上,f'(x)<0,函數(shù)f(x)單調(diào)遞減
∵f(0)=0,f(1)=1-3=-2
∴實數(shù)m的取值范圍是[-2,0]
故答案為:[-2,0]
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,解題的關(guān)鍵是分離參數(shù),構(gòu)造函數(shù),利用導數(shù)求解.