【題目】如圖(1),在圓錐內(nèi)放兩個(gè)大小不同且不相切的球,使得它們分別與圓錐的側(cè)面、底面相切,用與兩球都相切的平面截圓錐的側(cè)面得到截口曲線是橢圓.理由如下:如圖(2),若兩個(gè)球分別與截面相切于點(diǎn),在得到的截口曲線上任取一點(diǎn),過(guò)點(diǎn)作圓錐母線,分別與兩球相切于點(diǎn),由球與圓的幾何性質(zhì),得,所以,且,由橢圓定義知截口曲線是橢圓,切點(diǎn)為焦點(diǎn).這個(gè)結(jié)論在圓柱中也適用,如圖(3),在一個(gè)高為,底面半徑為的圓柱體內(nèi)放球,球與圓柱底面及側(cè)面均相切.若一個(gè)平面與兩個(gè)球均相切,則此平面截圓柱所得的截口曲線也為一個(gè)橢圓,則該橢圓的離心率為______.

【答案】

【解析】

根據(jù)題意可得橢圓的長(zhǎng)軸長(zhǎng)和短軸長(zhǎng),再代入離心率方程,即可得答案;

如圖所示,

根據(jù)題意可得橢圓上的點(diǎn)到兩個(gè)切點(diǎn)的距離等于,,

,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的離心率為,雙曲線的漸近線與橢圓的交點(diǎn)到原點(diǎn)的距離均為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)為橢圓上的動(dòng)點(diǎn),三點(diǎn)共線,直線的斜率分別為.

i)證明:

ii)若,設(shè)直線過(guò)點(diǎn),直線過(guò)點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn).

1)若,求直線的方程;

2)過(guò)點(diǎn)作直線交拋物線,兩點(diǎn),若線段,的中點(diǎn)分別為,,直線軸的交點(diǎn)為,求點(diǎn)到直線距離和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人們通常以分貝(符號(hào)是)為單位來(lái)表示聲音強(qiáng)度的等級(jí),30~40分貝是較理想的安靜環(huán)境,超過(guò)50分貝就會(huì)影響睡眠和休息,70分貝以上會(huì)干擾談話,長(zhǎng)期生活在90分貝以上的嗓聲環(huán)境,會(huì)嚴(yán)重影響聽力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽覺(jué)器官會(huì)發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽力,為了保護(hù)聽力,應(yīng)控制噪聲不超過(guò)90分貝,一般地,如果強(qiáng)度為的聲音對(duì)應(yīng)的等級(jí)為,則有,則的聲音與的聲音強(qiáng)度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分類是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機(jī)抽取年齡在區(qū)間[25,85]上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如表:

1)填寫下面2x2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類的有關(guān)知識(shí)有差異;

2)若對(duì)年齡在[4555),[25,35)的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù)K2,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個(gè)判斷:①對(duì)于給定的正整數(shù),存在,使得成立;②當(dāng)a時(shí),對(duì)于給定的正整數(shù),存在,使得成立;③當(dāng)時(shí),函數(shù)既有對(duì)稱軸又有對(duì)稱中心;④當(dāng)時(shí),的值只有0.其中正確判斷的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列:Aa1,a2,…,an,Bb1b2,…,bn.已知aibj∈{0,1}(i=12,…,n;j=1,2,…,n),定義n×n數(shù)表,其中xij.

(1)若A1,11,0B0,1,0,0,寫出XAB);

(2)若AB是不同的數(shù)列,求證:n×n數(shù)表XAB)滿足“xij=xjii=1,2,…,n;j=1,2,…,n;ij)”的充分必要條件為“ak+bk=1k=1,2,…,n)”;

(3)若數(shù)列AB中的1共有n個(gè),求證:n×n數(shù)表XA,B)中1的個(gè)數(shù)不大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線方程為,點(diǎn)N在圓上,則的最小值為( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);

2)若有兩個(gè)極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案