【題目】郴州市某中學(xué)從甲乙兩個(gè)教師所教班級(jí)的學(xué)生中隨機(jī)抽取100人,每人分別對(duì)兩個(gè)教師進(jìn)行評(píng)分,滿分均為100分,整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:,,,.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:

乙教師分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

3

3

15

19

35

25

(1)在抽樣的100人中,求對(duì)甲教師的評(píng)分低于70分的人數(shù);

(2)從對(duì)乙教師的評(píng)分在范圍內(nèi)的人中隨機(jī)選出2人,求2人評(píng)分均在范圍內(nèi)的概率;

(3)如果該校以學(xué)生對(duì)老師評(píng)分的中位數(shù)是否大于80分作為衡量一個(gè)教師是否可評(píng)為該年度該校優(yōu)秀教師的標(biāo)準(zhǔn),則甲、乙兩個(gè)教師中哪一個(gè)可評(píng)為年度該校優(yōu)秀教師?(精確到0.1)

【答案】(1)32(2)(3)乙

【解析】

(1)由甲教師分?jǐn)?shù)的頻率分布直方圖,求得的值,進(jìn)而可求得甲教師的評(píng)分低于70分的概率,得到甲教師的評(píng)分低于70分的人數(shù);(2)由題意,對(duì)乙教師的評(píng)分在范圍內(nèi)的有3人,設(shè)為,對(duì)乙教師的評(píng)分在范圍內(nèi)的有3人,設(shè)為,利用列舉法得到基本事件的總數(shù),和恰有2人評(píng)分在范圍內(nèi)所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式,即可求解.(3)由甲教師分?jǐn)?shù)的頻率分布直方圖和由乙教師的頻率分布表,分別求得甲教師和乙教師的中位數(shù),比較即可得到結(jié)論.

解:(1)由甲教師分?jǐn)?shù)的頻率分布直方圖,得

對(duì)甲教師的評(píng)分低于70分的概率為

所以,對(duì)甲教師的評(píng)分低于70分的人數(shù)為;

(2)對(duì)乙教師的評(píng)分在范圍內(nèi)的有3人,設(shè)為

對(duì)乙教師的評(píng)分在范圍內(nèi)的有3人,設(shè)為

從這6人中隨機(jī)選出2人的選法為:

,,,,,,,,,,,共15種

其中,恰有2人評(píng)分在范圍內(nèi)的選法為:,共3種

故2人評(píng)分均在范圍內(nèi)的概率為。

(3)由甲教師分?jǐn)?shù)的頻率分布直方圖,

因?yàn)?/span>

設(shè)甲教師評(píng)分的中位數(shù)為,則,解得:

由乙教師的頻率分布表,

因?yàn)?/span>

設(shè)乙教師評(píng)分的中位數(shù)為,則:

,解得:

所以乙教師可評(píng)為該年度該校優(yōu)秀教師

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知平面,為等邊三角形,,,與平面所成角的正切值為.

(Ⅰ)證明:平面

(Ⅱ)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購(gòu)買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購(gòu)買這款電視機(jī)

不愿意購(gòu)買這款電視機(jī)

總計(jì)

40歲以上

800

1000

40歲以下

600

總計(jì)

1200

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購(gòu)買該款電視機(jī)”與“市民的年齡”有關(guān);

(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在的電視機(jī)中抽取5臺(tái),再?gòu)倪@5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測(cè),求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在內(nèi)的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)(單位:百萬(wàn)元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);

(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:

使用壽命

材料類型

個(gè)月

個(gè)月

個(gè)月

個(gè)月

總計(jì)

如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, ,點(diǎn)在線段上.

() 若點(diǎn)的中點(diǎn),求證:平面;

() 求證:平面平面;

() 當(dāng)平面與平面所成二面角的余弦值為時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為,點(diǎn)E,FG分別為棱AB,的中點(diǎn),下列結(jié)論中,正確結(jié)論的序號(hào)是___________.

①過(guò)E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;

平面EFG;

平面

④異面直線EF所成角的正切值為;

⑤四面體的體積等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝國(guó)慶節(jié),某中學(xué)團(tuán)委組織了歌頌祖國(guó),愛(ài)我中華知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名,將其成績(jī)(成績(jī)均為整數(shù))分成[40,50)[50,60),,[90,100)六組,并畫(huà)出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問(wèn)題:

(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.

(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;

(2)求滿足的點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案