【題目】已知函數(shù), . 

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

【答案】(Ⅰ); ; (Ⅱ)見(jiàn)解析;(Ⅲ) .

【解析】試題分析:(Ⅰ)當(dāng)時(shí), ,求函數(shù)的導(dǎo)數(shù),并且求 值,判斷兩側(cè)的單調(diào)性,求極值;(Ⅱ)當(dāng)時(shí), ,討論兩根 的大小關(guān)系,從而得到函數(shù)的單調(diào)區(qū)間;(Ⅲ)設(shè),將不等式整理為 ,即說(shuō)明函數(shù)是單調(diào)遞增函數(shù),即恒成立,求的取值范圍.

試題解析:(Ⅰ)當(dāng)時(shí),

當(dāng)時(shí), , 單調(diào)遞增;

當(dāng)時(shí), 單調(diào)遞減,

所以時(shí), ;

時(shí),

(Ⅱ)當(dāng)時(shí), ,

①當(dāng),即時(shí),由可得,此時(shí)單調(diào)遞增;由可得,此時(shí)單調(diào)遞減;

②當(dāng),即時(shí), 上恒成立,此時(shí)單調(diào)遞增;

③當(dāng),即時(shí),由可得,此時(shí)單調(diào)遞增;由可得,此時(shí)單調(diào)遞減.

綜上:當(dāng)時(shí), 增區(qū)間為, ,減區(qū)間為;

當(dāng)時(shí), 增區(qū)間為,無(wú)減區(qū)間;

當(dāng)時(shí), 增區(qū)間為, ,減區(qū)間為

(Ⅲ)假設(shè)存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立,

不妨設(shè),則由恒成立可得: 恒成立,

,則上單調(diào)遞增,所以恒成立,

恒成立,

,即恒成立,又,

時(shí)恒成立,

,

∴當(dāng)時(shí),對(duì)任意的 ,且,有恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)). 點(diǎn)是曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為.

1)寫出曲線的普通方程和極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【天津市紅橋區(qū)重點(diǎn)中學(xué)八校2017屆高三4月聯(lián)考數(shù)學(xué)(文)】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn)

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn), 是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).①若直線的斜率為,求四邊形面積的最大值;

②當(dāng), 運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè),證明:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“丁香”和“小花”是好朋友,她們相約本周末去爬歌樂(lè)山,并約定周日早上8:00至8:30之間(假定她們?cè)谶@一時(shí)間段內(nèi)任一時(shí)刻等可能的到達(dá))在歌樂(lè)山健身步道起點(diǎn)處會(huì)合,若“丁香”先到,則她最多等待“小花”15分鐘.若“小花”先到,則她最多等待“丁香”10分鐘,若在等待時(shí)間內(nèi)對(duì)方到達(dá),則她倆就一起快樂(lè)地爬山,否則超過(guò)等待時(shí)間后她們均不再等候?qū)Ψ蕉陋?dú)爬山,則“丁香”和“小花”快樂(lè)地一起爬歌樂(lè)山的概率是(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,是線段上的動(dòng)點(diǎn).

(Ⅰ)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;

(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四個(gè)函數(shù)y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π為周期,在 上單調(diào)遞增的偶函數(shù)是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若處相切,試求的表達(dá)式;

(Ⅱ)若上是減函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)證明不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)p:不論m取何實(shí)數(shù),方程x2xm0必有實(shí)數(shù)根;

(2)q:存在一個(gè)實(shí)數(shù)x,使得x2x10

(3)r:等圓的面積相等,周長(zhǎng)相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案