【題目】已知函數(shù),.
(Ⅰ)若與在處相切,試求的表達式;
(Ⅱ)若在上是減函數(shù),求實數(shù)的取值范圍;
(Ⅲ)證明不等式:.
【答案】(1); (2);(3)見解析.
【解析】【試題分析】(1)依據(jù)題設(shè)導數(shù)計算公式及導數(shù)的幾何意義建立方程求解;(2)依據(jù)題設(shè)條件構(gòu)造函數(shù)運用導數(shù)建立不等式,分離參數(shù)借助基本不等式求得參數(shù)的取值范圍;(3)借助(2)的結(jié)論建立遞推式,然后運用疊加的方法進行分析推證:
(Ⅰ)由于與在處相切,
且,得:
又∵,∴,
∴.
(Ⅱ)在上是減函數(shù),
∴在上恒成立.
即在上恒成立,由,,
又∵,∴得.
(Ⅲ)由(Ⅱ)可得:當時:在上是減函數(shù),
∴當時,即,
所以從而得到:.
當時:,
當時:,
當時:,
當時:,,.
上述不等式相加得:
…+
即…+.(,)
科目:高中數(shù)學 來源: 題型:
【題目】【2016高考北京文數(shù)】已知橢圓C:過點A(2,0),B(0,1)兩點.
(I)求橢圓C的方程及離心率;
(Ⅱ)設(shè)P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)的極值;
(Ⅱ)當時,討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標原點,過點作的平行線交曲線于, 兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實數(shù),若a=b,c=d,則a+c=b+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N* .
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com