【題目】已知函數(shù),.

(Ⅰ)若處相切,試求的表達式;

(Ⅱ)若上是減函數(shù),求實數(shù)的取值范圍;

(Ⅲ)證明不等式:.

【答案】(1); (2);(3)見解析.

【解析】試題分析】(1)依據(jù)題設(shè)導數(shù)計算公式及導數(shù)的幾何意義建立方程求解;(2)依據(jù)題設(shè)條件構(gòu)造函數(shù)運用導數(shù)建立不等式,分離參數(shù)借助基本不等式求得參數(shù)的取值范圍;(3)借助(2)的結(jié)論建立遞推式,然后運用疊加的方法進行分析推證

(Ⅰ)由于處相切,

得:

又∵,∴,

.

(Ⅱ)上是減函數(shù),

上恒成立.

上恒成立,由,,

又∵,∴.

(Ⅲ)由(Ⅱ)可得:當時:上是減函數(shù),

∴當時,,

所以從而得到:.

時:

時:,

時:

時:,,.

上述不等式相加得:

…+

…+.(

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】【2016高考北京文數(shù)】已知橢圓C:過點A(2,0),B(0,1)兩點.

I)求橢圓C的方程及離心率;

(Ⅱ)設(shè)P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), . 

(Ⅰ)當時,求函數(shù)的極值;

(Ⅱ)當時,討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , 的中點.

(1)證明: 平面

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.

(1)αβ,則sin αsin β;

(2)若對角線相等,則梯形為等腰梯形;

(3)已知ab,c,d都是實數(shù),若ab,cd,則acbd.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學期望;

II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N*
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案