【題目】已知動圓與圓 相切,且與圓 相內切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

【答案】(1)圓心的軌跡

2的比值為一個常數(shù),這個常數(shù)為

3)當時, 取最大值.

【解析】試題分析:(1)根據兩圓相切得圓心距與半徑之間關系: ,消去半徑得,符合橢圓定義,由定義可得軌跡方程(2)探究問題,實質是計算問題,即利用坐標求的比值:根據直線方程與橢圓方程聯(lián)立方程組,利用兩點間距離公式及韋達定理、弦長公式可得的表達式,兩式相比即得比值3)因為的面積的面積,所以,利用原點到直線距離得三角形的高,而底為弦長MN2中已求),可得面積表達式,為一個分式函數(shù),結合變量分離法(整體代換)、基本不等式求最值

試題解析:解:(1)設圓心的坐標為,半徑為,

由于動圓一圓相切,且與圓相內切,所以動圓與圓只能內切

圓心的軌跡為以為焦點的橢圓,其中,

故圓心的軌跡

2)設,直線,則直線

可得: ,,

可得:

,

的比值為一個常數(shù),這個常數(shù)為

3,的面積的面積,,

到直線的距離

1

,則, ,

(當且僅當,即,亦即時取等號)

時, 取最大值1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且bsinA= acosB. (Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,,,是線段上的動點.

(Ⅰ)試確定點的位置,使平面,并說明理由;

(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經驗公式為:弧田面積= (弦×矢+矢2).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為 π,弦長等于9米的弧田.按照《九章算術》中弧田面積的經驗公式計算所得弧田面積與實際面積的差為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若處相切,試求的表達式;

(Ⅱ)若上是減函數(shù),求實數(shù)的取值范圍;

(Ⅲ)證明不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是 ,若將f(x)的圖象先向右平移 個單位,再向上平移 個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的對稱軸及單調區(qū)間;
(3)若對任意x∈[0, ],f2(x)﹣(2+m)f(x)+2+m≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , 的中點.

(1)求證:平面平面;

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某地高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?
(3)通過該統(tǒng)計圖,可以估計該地學生跳繩次數(shù)的眾數(shù)是 , 中位數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用長14.8 m的鋼條制作一個長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.

查看答案和解析>>

同步練習冊答案