【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?
(3)通過(guò)該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是 , 中位數(shù)是 .
【答案】
(1)解:∵從左到右各小長(zhǎng)方形的面積之比為2:4:17:15:9:3,
第二小組頻數(shù)為12.
∴樣本容量是 =150,
∴第二小組的頻率是 =0.08.
(2)解:∵次數(shù)在110以上為達(dá)標(biāo),
∴在這組數(shù)據(jù)中達(dá)標(biāo)的個(gè)體數(shù)一共有17+15+9+3,
∴全體學(xué)生的達(dá)標(biāo)率估計(jì)是 =0.88
(3)115;121.3
【解析】解:(3)在頻率分布直方圖中最高的小長(zhǎng)方形的底邊的中點(diǎn)就是這組數(shù)據(jù)的眾數(shù),
即 =115,
處在把頻率分布直方圖所有的小長(zhǎng)方形的面積分成兩部分的一條垂直與橫軸的線(xiàn)對(duì)應(yīng)的橫標(biāo)就是中位數(shù)121.3
【考點(diǎn)精析】本題主要考查了頻率分布直方圖和平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批底部周長(zhǎng)屬于[80,130](單位:cm)的樹(shù)木進(jìn)行研究,從中隨機(jī)抽出200株樹(shù)木并測(cè)出其底部周長(zhǎng),得到頻率分布直方圖如圖所示,由此估計(jì),這批樹(shù)木的底部周長(zhǎng)的眾數(shù)是cm,中位數(shù)是cm,平均數(shù)是cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線(xiàn).設(shè)為曲線(xiàn)上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的平行線(xiàn)交曲線(xiàn)于, 兩個(gè)不同的點(diǎn).
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)試探究和的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說(shuō)明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[﹣ , ]時(shí),求函數(shù)y=f(x+ )﹣ f(x+ )的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線(xiàn)l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線(xiàn)m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線(xiàn)m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的短軸長(zhǎng)為,右焦點(diǎn)為,點(diǎn)是橢圓上異于左、右頂點(diǎn)的一點(diǎn).
(1)求橢圓的方程;
(2)若直線(xiàn)與直線(xiàn)交于點(diǎn),線(xiàn)段的中點(diǎn)為,證明:點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點(diǎn)為線(xiàn)段的中點(diǎn), , 現(xiàn)將△沿進(jìn)行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點(diǎn)分別在線(xiàn)段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),過(guò)作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線(xiàn)上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com