如圖是一個從A→B的”闖關(guān)”游戲.規(guī)則規(guī)定:每過一關(guān)前都要拋擲一個在各面上分別標有1,2,3,4的均勻的正四面體.在過第n(n=1,2,3)關(guān)時,需要拋擲n次正四面體,如果這n次面朝下的數(shù)字之和大于2n,則闖關(guān)成功.
(1)求闖第一關(guān)成功的概率;
(2)記闖關(guān)成功的關(guān)數(shù)為隨機變量X,求X的分布列和期望.
考點:離散型隨機變量的期望與方差,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(1)拋一次正四面體面朝下的數(shù)字有1,2,3,4四種情況,大于2的有兩種情況,由此能求出闖第一關(guān)成功的概率.
(2)由題意知X的所有可能取值為0,1,2,3,分別求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出X的分布列和數(shù)學(xué)期望.
解答: 解:(1)拋一次正四面體面朝下的數(shù)字有1,2,3,4四種情況,
大于2的有兩種情況,
∴闖第一關(guān)成功的概率p=
1
2

(2)記事件“拋擲n次正四面體,這n次面朝下的數(shù)學(xué)之和大于2n”為事件An,
則P(A1)=
1
2
;
拋擲兩次正四面體面朝下的數(shù)字之和的情況如圖所示:
∴P(A2)=
10
16
=
5
8

設(shè)拋擲三次正四面體面朝下的數(shù)字依次記為:x,y,z,
考慮x+y+z>8的情況,
當x=1時,y+z>7有1種情況,
當x=2時,y+z>6有3種情況,
當x=3時,y+z>5有6種情況,
當x=4時,y+z>4有10種情況,
∴P(A3)=
1+3+6+10
43
=
5
16

由題意知X的所有可能取值為0,1,2,3,
P(X=0)=P(
.
A1
)=
1
2
,
P(X=1)=P(A1
.
A2
)=
1
2
×
3
8
=
3
16

P(X=2)=P(A1A2
.
A3
)=
1
2
×
5
8
×
11
16
=
55
256
,
P(X=3)=P(A1A2A3)=
1
2
×
5
8
×
5
16
=
25
256
,
∴X的分布列為:
 X  0  1  2  3
 P  
1
2
 
3
16
 
55
256
 
25
256
EX=
1
2
+1×
3
16
+2×
55
256
+3×
25
256
=
233
256
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望,是中檔題,在歷年的高考中都是必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-2x+3(-1≤x≤4)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,為了得到y(tǒng)=sin2x的圖象,只需將f(x)的圖象(  )
A、向右平移
π
3
個單位
B、向右平移
π
6
個單位
C、向左平移
π
3
個單位
D、向左平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=2”是“關(guān)于x的不等式|x+1|+|x+2|<a的解集非空”的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)隨機抽取30名學(xué)生參加環(huán)保知識測試,得分(十進制)如圖所示,假設(shè)得分值的中位數(shù)為a,眾數(shù)為b,平均值為c,則( 。
A、a=b=c
B、a<c<b
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)g(x)=ax滿足:g(-3)=
1
8
,定義域為R的函數(shù)f(x)=
g(x)-1
g(x)+m
是奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)在其定義域上的單調(diào)性,并求函數(shù)的值域;
(3)若不等式:t•f(x)≥4x-2x+2+3對x∈[1,2]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=2AB,CE與平面ACD所成角為45°,F(xiàn)、H分別為CD、DE中點.
求證:平面BCE∥平面AHF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-
1
4
+
2-x

(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)對于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+3.
(1)當x>0時,方程f(x)=-1有解,求a的最小值;
(2)當x∈[0,4]時,不等式f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案