【題目】已知點(diǎn)M是圓心為E的圓上的動(dòng)點(diǎn),點(diǎn),線段MF的垂直平分線交EM于點(diǎn)P.

)求動(dòng)點(diǎn)P的軌跡C的方程;

)過(guò)原點(diǎn)O作直線交()中軌跡C于點(diǎn)A、B,點(diǎn)D滿足,試求四邊形AFBD的面積的取值范圍.

【答案】(Ⅰ)

【解析】試題分析:利用橢圓定義求出點(diǎn)P的軌跡是橢圓,其中, ,求出橢圓方程即可;

(Ⅱ)求出SAFBD=2S△AFB,通過(guò)討論AB是短軸、AB是長(zhǎng)軸的情況,求出四邊形的面積即可.

試題解析:

(Ⅰ)∵點(diǎn)P為線段MF的垂直平分線,

所以點(diǎn)P的軌跡為橢圓,其中

所以點(diǎn)P的軌跡C的方程為

(Ⅱ)由,知四邊形AFBD為平行四邊形

所以

當(dāng)AB為短軸時(shí),

當(dāng)AB為長(zhǎng)軸時(shí),易知四邊形AFBD不是平行四邊形所以AB的斜率不為0.

當(dāng)直線AB的斜率存在且不為0時(shí),設(shè)AB的方程為

聯(lián)立方程消去x,整理得

,

,

,

,所以

綜上,四邊形AFBD的面積的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為、,離心率.過(guò)的直線交橢圓于兩點(diǎn),三角形的周長(zhǎng)為.

(1)求橢圓的方程;

(2)若弦,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因?yàn)?/span> , ,所以,則該幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,則 ,其體積為 ;故選D.

點(diǎn)睛:在處理幾何體的外接球問(wèn)題,往往將所給幾何體與正方體或長(zhǎng)方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長(zhǎng)方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,也是處理本題的技巧所在.

型】單選題
結(jié)束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題,其中正確的個(gè)數(shù)有( )

①由獨(dú)立性檢驗(yàn)可知,有的把握認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān),某人數(shù)學(xué)成績(jī)優(yōu)秀,則他有99%的可能物理優(yōu)秀.

②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;

③在線性回歸方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位;

④對(duì)分類變量,它們的隨機(jī)變量的觀測(cè)值來(lái)說(shuō), 越小,“有關(guān)系”的把握程度越大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的函數(shù).

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條光線經(jīng)過(guò)P(2,3)點(diǎn),射在直線l:xy10,反射后穿過(guò)點(diǎn)Q(1,1).

(1)求入射光線的方程;

(2)求這條光線從PQ的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.

(1)求曲線的方程;

(2)過(guò)點(diǎn)且斜率為的直線交曲線兩點(diǎn),若,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)三點(diǎn).

(1)求橢圓的方程;

(2)在直線上任取一點(diǎn),連接,分別與橢圓交于兩點(diǎn),判斷直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn).若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)窮數(shù)列個(gè)不同的數(shù)組成, 的前項(xiàng)和,若對(duì)任意的最大值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案