已知α∈(
π
2
,π),且tan(α+
π
4
)=-
1
7
,則sinα+cosα的值是( 。
A、
1
5
B、-
1
5
C、-
4
3
D、-
3
4
考點:同角三角函數(shù)基本關(guān)系的運用,兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由題意可得
tanα+1
1-tanα
=-
1
7
,解得tanα=-
4
3
,再根據(jù)α的范圍,利用同角三角函數(shù)的基本關(guān)系求得sinα和cosα的值,從而求得sinα+cosα的值.
解答: 解:已知α∈(
π
2
,π),且tan(α+
π
4
)=-
1
7
,
tanα+1
1-tanα
=-
1
7
,解得 tanα=-
4
3

再根據(jù)
sinα
cosα
=-
4
3
,sinα>0,sin2α+cos2α=1求得sinα=
4
5
,cosα=-
3
5

∴sinα+cosα=
1
5
,
故選:A.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的三角公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)a>ln2-1且x>0時,ex>x2-2ax+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=4x2-kx+2k在[-1,2]上為減函數(shù),則實數(shù)k的取值范圍為( 。
A、[16,+∞)
B、(-∞,-8]
C、[-8,16]
D、(-∞,-8]∩[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球的半徑為R,P、Q是球面上北緯60°圈上的兩點,這兩點在緯度圈上的劣弧的長是
πR
2
,則這兩點的球面距離是( 。
A、
3
R
B、
2
πR
2
C、
πR
3
D、
πR
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下面的程序框圖,輸出的結(jié)果是( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,能使輸入的x值與輸出的y值相等的所有x值分別為( 。
A、1、2、3
B、0、1
C、0、1、3
D、0、1、2、3、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(x+1),g(x)=x-
1
2
x2
,a∈R.
(1)若a=-1,求曲線y=f(x)在x=0處的切線方程;
(2)若對任意的x∈[0,+∞),都有f(x)≥g(x)恒成立,求a的最小值;
(3)設(shè)p(x)=f(x-1),a>0,若A(x1,y1),B(x2,y2)為曲線y=p(x)的兩個不同點,滿足0<x1<x2,且?x3∈(x1,x2),使得曲線y=P(x)在(x3,P(x3))處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a+bsin2x+ccos2x(x∈R)的圖象過點A(0,1),B(
π
4
,1),且b>0,又f(x)的最大值為2
2
-1.
(Ⅰ)將f(x)寫成含Asin(ωx+φ)(ω>0,0<φ<x)的形式;
(Ⅱ)由函數(shù)y=f(x)圖象經(jīng)過平移是否能得到一個奇函數(shù)y=g(x)的圖象?若能,請寫出平移的過程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(Ⅰ)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求至少有一個是乙車床加工的概率;
(Ⅱ)從抽取的6個零件中任意取出3個,記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案