【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線(1)求曲線的普通方程;(2)若點在曲線上,點 ,當點在曲線上運動時,求中點的軌跡方程.

【答案】1 2

【解析】試題分析:(1)將參數(shù)方程轉(zhuǎn)化為直角坐標系下的普通方程,需要根據(jù)參數(shù)方程的結構特征,選取恰當?shù)南麉⒎椒,常見的消參方法有:代入消參法、加減消參法、平方消參法;(2)將參數(shù)方程轉(zhuǎn)化為普通方程時,要注意兩種方程的等價性,不要增解、漏解,若有范圍限制,要標出的取值范圍;(3)直角坐標方程化為極坐標方程,只需把公式直接代入并化簡即可;而極坐標方程化為極坐標方程要通過變形,構造形如,,的形式,進行整體代換,其中方程的兩邊同乘以(或同除以)及方程的兩邊平方是常用的變形方法.

試題解析:(1:

代入的普通方程得,即

2)設 , 則

所以,即

代入,得,即

中點的軌跡方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(Ⅰ)求的最小值;

(Ⅱ)若不等式恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2 x+c(a,c∈R)滿足條件:①f(1)=0;②對一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在實數(shù)m,使函數(shù)g(x)=f(x)﹣mx在區(qū)間[m,m+2]上有最小值﹣5,求出實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞),f(x)是奇函數(shù),且當x>0時,f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點恰有兩個,則實數(shù)a的取值范圍是(
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;

(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結束.

(1)求第一次試驗恰摸到一個紅球和一個白球概率;

(2)記試驗次數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是直線與函數(shù)圖像的兩個相鄰的交點,且.

(1)求的值和函數(shù)的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足條件(n﹣1)an+1=(n+1)(an﹣1),且a2=6,
(1)計算a1、a3、a4 , 請猜測數(shù)列{an}的通項公式并用數(shù)學歸納法證明;
(2)設bn=an+n(n∈N*),求 的值.

查看答案和解析>>

同步練習冊答案