【題目】設函數f(x)= (a>0,且a≠1).
①若a= ,則函數f(x)的值域為;
②若f(x)在R上是增函數,則a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對邊分別是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大小;
(2)若△ABC的面積S=5 ,a= ,求sinB+sinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是圓: 上任意一點,點與圓心關于原點對稱.線段的中垂線與交于點.
(1)求動點的軌跡方程;
(2)設點,若直線軸且與曲線交于另一點,直線與直線交于點,證明:點恒在曲線上,并求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差為2的等差數列,數列{bn滿足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數列{an}的通項公式;
(2)求bn取得最小值時n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點P在面對角線AC上運動,給出下列四個命題:
①D1P∥平面A1BC1;
②D1P⊥BD;
③平面PDB1⊥平面A1BC1;
④三棱錐A1﹣BPC1的體積不變.
則其中所有正確的命題的序號是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右頂點是雙曲線的頂點,且橢圓的上頂點到雙曲線的漸近線的距離為.
(1)求橢圓的方程;
(2)若直線與相交于兩點,與相交于兩點,且,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , a4+a7=20,對任意的k∈N都有Sk+1=3Sk+k2 .
(I) 求數列{an}的通項公式;
(Ⅱ)數列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項公式及{(﹣1)m﹣1bm}的前2m項和T2m .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com