【題目】已知函數(shù)f(x)=2cos2x+sin2x﹣4cosx.
(1)求 的值;
(2)求f(x)的最大值和最小值.

【答案】
(1)解: =
(2)解:f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx

=3cos2x﹣4cosx﹣1

= ,

因為cosx∈[﹣1,1],

所以當cosx=﹣1時,f(x)取最大值6;當 時,取最小值﹣


【解析】(1)把x= 代入到f(x)中,利用特殊角的三角函數(shù)值求出即可;(2)利用同角三角函數(shù)間的基本關(guān)系把sin2x變?yōu)?﹣cos2x,然后利用二倍角的余弦函數(shù)公式把cos2x變?yōu)?cos2x﹣1,得到f(x)是關(guān)于cosx的二次函數(shù),利用配方法把f(x)變成二次函數(shù)的頂點式,根據(jù)cosx的值域,利用二次函數(shù)求最值的方法求出f(x)的最大值和最小值即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是雙曲線 的兩個焦點,PC上一點,若,且的最小內(nèi)角為,則C的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足.

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命題“若a=﹣1,則函數(shù)f(x)=ax2+2x﹣1只有一個零點”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀程序框圖,若輸出結(jié)果S= ,則整數(shù)m的值為(

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設(shè)線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>0,且a≠1).
①若a= ,則函數(shù)f(x)的值域為;
②若f(x)在R上是增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,,是邊長為2的等邊三角形,的中點,且;

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案