【題目】已知點(diǎn)為圓的圓心, 是圓上的動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)上的點(diǎn),滿足, .

1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點(diǎn)的軌跡交于不同的兩點(diǎn), 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.

【答案】1;(2

【解析】試題分析:(1中線段的垂直平分線,所以,所以點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為2,長(zhǎng)軸為的橢圓從而可得橢圓方程;(2設(shè)直線,直線與圓相切,可得直線方程與橢圓方程聯(lián)立可得: ,可得,再利用數(shù)量積運(yùn)算性質(zhì)、根與系數(shù)的關(guān)系及其即可解出的范圍.

試題解析:(1)由題意知中線段的垂直平分線,所以

所以點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為2,長(zhǎng)軸為的橢圓,

故點(diǎn)的軌跡方程式

2)設(shè)直線

直線與圓相切

聯(lián)立

所以為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面有四個(gè)命題:
①函數(shù)y=tan x在每一個(gè)周期內(nèi)都是增函數(shù).
②函數(shù)y=sin(2x+ )的圖象關(guān)于直線x= 對(duì)稱;
③函數(shù)y=tanx的對(duì)稱中心(kπ,0),k∈Z.
④函數(shù)y=sin(2x﹣ )是偶函數(shù).
其中正確結(jié)論個(gè)數(shù)(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)時(shí),方程表示的曲線可能是______

②兩條平行直線 ③橢圓 ④雙曲線 ⑤拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,垂足為,點(diǎn)在直線,,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí).

(1)求點(diǎn)的軌跡的方程,并指出軌跡.

(2)直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,lC有兩個(gè)交點(diǎn)AB,線段AB的中點(diǎn)為M.證明:直線OM的斜率與直線l的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+sin2x﹣4cosx.
(1)求 的值;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大;
(2)若△ABC的面積S=5 ,a= ,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右頂點(diǎn)是雙曲線的頂點(diǎn),且橢圓的上頂點(diǎn)到雙曲線的漸近線的距離為.

(1)求橢圓的方程;

(2)若直線相交于兩點(diǎn),與相交于兩點(diǎn),且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案