【題目】已知二次函數(shù)滿足,且.
(1)求a , b的值;
(2)若,在區(qū)間上的最小值為,最大值為,求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)條件得對稱軸,再結(jié)合,列方程組解得結(jié)果,(2)根據(jù)對稱軸與定義區(qū)間位置關(guān)系分類討論,確定對應(yīng)最值取法,分別求得的取值范圍,最后求并集得結(jié)果.
(1)根據(jù)題意得,f(1)=a-4+b=-2,
又因為,
所以二次函數(shù)的對稱軸為,解得a=1,
所以b=1,
(2)由(1)可知, ,
當(dāng)m>2時,
最小值,最大值,
所以;
當(dāng)m+1<2<m+2,即0<m<1時,
最小值為,最大值,
所以;
當(dāng)m≤2<m+1,即1<m≤2,
最小值為,最大值為,
所以;
當(dāng)m+2≤2時,即m≤0時,最小值為,最大值,
所以;
所以,
函數(shù)的圖象如下:
觀察圖象可知,函數(shù)的值域為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求實數(shù)b的取值范圍;
(2)設(shè)F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上單調(diào)遞增,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=(x+1)2與圓 (r>0)有一個公共點A,且在A處兩曲線的切線為同一直線l.
(1)求r;
(2)設(shè)m,n是異于l且與C及M都相切的兩條直線,m,n的交點為D,求D到l的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)(常數(shù),為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求實數(shù)的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(Ⅰ)寫出曲線的普通方程和曲線的直角坐標方程;
(Ⅱ)已知點,曲線和曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,點A1在底面ABC的投影是線段BC的中點O.
(1)證明在側(cè)棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點的中心( , )
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com