【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,為中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.
【答案】(I)見(jiàn)解析; (II); (Ⅲ)答案見(jiàn)解析 .
【解析】
(Ⅰ)由題意結(jié)合三角形中位線的性質(zhì)和線面平行的判定定理即可證得題中的結(jié)論;
(Ⅱ)由題意建立空間直角坐標(biāo)系,求得半平面的法向量,然后結(jié)合法向量可得二面角的余弦值;
(Ⅲ)假設(shè)存在滿足題意的點(diǎn),由題意結(jié)合點(diǎn)的坐標(biāo)和向量垂直的充分必要條件得到關(guān)于的方程,解方程即可確定的值.
(I)設(shè)交于點(diǎn),連結(jié).
因?yàn)榈酌?/span>是矩形,所以為中點(diǎn) .
又因?yàn)?/span>為中點(diǎn) , 所以∥.
因?yàn)?/span>平面平面,所以∥平面.
(II)取的中點(diǎn),連結(jié),.
因?yàn)榈酌?/span>為矩形,所以.
因?yàn)?/span>,,
所以∥,所以.
又因?yàn)槠矫?/span>PCD⊥平面ABCD,平面平面PCD∩平面ABCD=CD.
所以PO⊥平面ABCD,
如圖,建立空間直角坐標(biāo)系,則,
設(shè)平面的法向量為,
所以
令,則,所以.
平面的法向量為,則.
如圖可知二面角為鈍角,所以二面角的余弦值為.
(Ⅲ)在棱上存在點(diǎn), 使.
設(shè),則.
因?yàn)?/span>,所以.
.
因?yàn)?/span>,所以.
所以,解得.
所以在棱上存在點(diǎn),使,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1(側(cè)棱垂直于底面的棱柱)中,CA⊥CB,CA=CB=CC1=2,動(dòng)點(diǎn)D在線段AB上.
(1)求證:當(dāng)點(diǎn)D為AB的中點(diǎn)時(shí),平面B1CD⊥上平面ABB1A1;
(2)當(dāng)AB=3AD時(shí),求平面B1CD與平面BB1C1C所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線的焦點(diǎn)且斜率為的直線交拋物線于,兩點(diǎn),且.
(1)求的值;
(2)拋物線上一點(diǎn),直線(其中)與拋物線交于,兩個(gè)不同的點(diǎn)(均與點(diǎn)不重合),設(shè)直線,的斜率分別為,,.動(dòng)點(diǎn)在直線上,且滿足,其中為坐標(biāo)原點(diǎn).當(dāng)線段最長(zhǎng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn).過(guò)點(diǎn)作直線的垂線,垂足為.證明直線過(guò)軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)實(shí)施“光盤(pán)行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足升的,按升計(jì)算(如剩余升,記為剩余升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
剩余酒量(單位:升) | 升以上(含升) | ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)位或位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中,底面為矩形,平面,二面角的平面角為,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)若,求實(shí)數(shù)的值,使得直線與平面所成角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對(duì)稱,則函數(shù)的圖象( )
A. 關(guān)于直線對(duì)稱B. 關(guān)于直線對(duì)稱
C. 關(guān)于點(diǎn)對(duì)稱D. 關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com