【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則相等總相等

A. 充分而不必要條件B. 必要而不充分條件

C. 充分必要條件D. 既不充分也不必要條件

【答案】B

【解析】

由題“總相等”一定能推出“相等”,反之舉反例即可

由祖暅原理知:“總相等”一定能推出“相等”,反之:若兩個同樣的圓錐,一個倒放,一個正放,則體積相同,截面面積不一定相同

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,中點.

(Ⅰ)求證:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.

1)求橢圓的標準方程.

2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形中,,,,為梯形的高,將沿折到的位置,使得.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱的底面是等邊三角形,側面底面是棱的中點.

(1)求證:平面平面;

(2)求平面將該三棱柱分成上下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某隧道設計為雙向四車道,車道總寬22米,要求通行車輛限高4.5米,隧道全長2.5千米,隧道的拱線近似地看成半個橢圓形狀.

1)若最大拱高h6米,則隧道設計的拱寬l是多少?

2)若最大拱高h不小于6米,則應如何設計拱高h和拱寬l,才能使半個橢圓形隧道的土方工程量最最?(半個橢圓的面積公式為,柱體體積為:底面積乘以高.本題結果精確到0.1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了進一步推動全市學習型黨組織、學習型社會建設,某市組織開展“學習強國”知識測試,每人測試文化、經(jīng)濟兩個項目,每個項目滿分均為60分.從全體測試人員中隨機抽取了100人,分別統(tǒng)計他們文化、經(jīng)濟兩個項目的測試成績,得到文化項目測試成績的頻數(shù)分布表和經(jīng)濟項目測試成績的頻率分布直方圖如下:

經(jīng)濟項目測試成績頻率分布直方圖

分數(shù)區(qū)間

頻數(shù)

2

3

5

15

40

35

文化項目測試成績頻數(shù)分布表

將測試人員的成績劃分為三個等級如下:分數(shù)在區(qū)間內為一般,分數(shù)在區(qū)間內為良好,分數(shù)在區(qū)間內為優(yōu)秀.

(1)在抽取的100人中,經(jīng)濟項目等級為優(yōu)秀的測試人員中女生有14人,經(jīng)濟項目等級為一般或良好的測試人員中女生有34人.填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認為“經(jīng)濟項目等級為優(yōu)秀”與性別有關?

優(yōu)秀

一般或良好

合計

男生數(shù)

女生數(shù)

合計

(2)用這100人的樣本估計總體.

(i)求該市文化項目測試成績中位數(shù)的估計值.

(ii)對該市文化項目、經(jīng)濟項目的學習成績進行評價.

附:

0.150

0.050

0.010

2.072

3.841

6.635

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于項數(shù)為)的有窮正整數(shù)數(shù)列,記),即中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.

1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;

2)設數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足),求證: );

3)設數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項互不相等且所有項的和等于所有項的積,求出所有的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的面積為,且滿足,則邊的最小值為_______.

查看答案和解析>>

同步練習冊答案