【題目】如圖,在等腰梯形中,,,,,為梯形的高,將沿折到的位置,使得.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1) 過點作,垂足為,連接.再分別證明與即可.
(2) 分別以,,的方向為,,軸的正方向,建立空間直角坐標(biāo)系,再根據(jù)空間向量求解線面所成的角即可.
(1)證明:過點作,垂足為,則,,
連接,依題意,為等腰直角三角形,
故,
又,故,所以,
在四棱錐中,因為,,
所以,故,
因為,,且平面,
所以平面.
(2)由(1)知,平面,所以,,又,所以,,兩兩垂直.以為原點,分別以,,的方向為,,軸的正方向,建立空間直角坐標(biāo)系,如圖所示,則各點坐標(biāo)為:
,,,,,
,,,
設(shè)平面的法向量為,則
,故,
取,故.
所以.
設(shè)直線與平面所成角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對稱,則函數(shù)的圖象( 。
A. 關(guān)于直線對稱B. 關(guān)于直線對稱
C. 關(guān)于點對稱D. 關(guān)于點對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司在當(dāng)?shù)?/span>、兩家超市各有一個銷售點,每日從同一家食品廠一次性購進(jìn)一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調(diào)配食品不計費用,若進(jìn)貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進(jìn)食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進(jìn)食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤的期望為決策依據(jù),在與之中選其一,應(yīng)選哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,⊥底面,為的中點,與平面所成的角為.
(1)求證:;
(2)求異面直線與所成的角的大小(結(jié)果用反三角函數(shù)表示);
(3)若直線與平面所成角分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過多很有創(chuàng)意的求法,如著名的蒲豐試驗,受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計的值,試驗步驟如下:①先請高二年級名同學(xué)每人在小卡片上隨機寫下一個實數(shù)對;②若卡片上的,能與構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù),估計的值.那么可以估計的值約為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com