【題目】在同一坐標(biāo)系中,函數(shù)y=ax+ay=ax的圖象大致是( 。

A. B.

C. D.

【答案】B

【解析】

一方面,函數(shù)y=ax橫過點(01)且在a1時遞增,在0a1時遞減;另一方面再結(jié)合函數(shù)y=ax+ay軸的交點為(0a)作出判斷.

解:函數(shù)y=ax橫過點(0,1)且在a>1時遞增,在0<a<1時遞減,而函數(shù)y=ax+ay軸的交點為(0,a),

因此,A中、由y=ax的圖象遞增得知a>1,由函數(shù)y=ax+ay軸的交點(0,a)得知a<1,矛盾;

C中、由y=ax的圖象遞減得知0<a<1,由函數(shù)y=ax+ay軸的交點(0,a)得知a>1,矛盾;

D中、由y=ax的圖象遞減得知0<a<1,函數(shù)y=ax+a遞減得知a<0,矛盾;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域為,

1)求的取值范圍;

2)若函數(shù)上的最大值與最小值之積為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知t為實數(shù),函數(shù),其中

1)若,求的取值范圍。

2)當(dāng)時,的圖象始終在的圖象的下方,求t的取值范圍;

3)設(shè),當(dāng)時,函數(shù)的值域為,若的最小值為,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,放在水平地面上的物體,受到方向不變的水平推力F的作用,F的大小與時間t的關(guān)系和物體運動速度v與時間t的關(guān)系如圖乙所示.下列判斷正確的是:

A.t3s時,物體受到力的合力為零

B.t6s時,將F撤掉,物體立刻靜止

C.2s4s內(nèi)物體所受摩擦力逐漸增大

D.t1s時,物體所受摩擦力是1N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式,解集為.

(1)若,求的值.

(2)解關(guān)于的不等式,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“能被3整除”的第二步中,時,為了使用假設(shè),應(yīng)將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為了保護(hù)環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到年生產(chǎn)銷售的統(tǒng)計規(guī)律如下:①年固定生產(chǎn)成本為2萬元;②每生產(chǎn)該型號空氣凈化器1百臺,成本增加1萬元;③年生產(chǎn)x百臺的銷售收入(萬元).假定生產(chǎn)的該型號空氣凈化器都能賣出(利潤=銷售收入﹣生產(chǎn)成本).

1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?

2)該產(chǎn)品生產(chǎn)多少臺時,可使年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在天內(nèi)每件的銷售價格(元)與時間)(天)的函數(shù)關(guān)系滿足函數(shù),該商品在天內(nèi)日銷售量(件)與時間)(天)之間滿足一次函數(shù)關(guān)系如下表:

(1)根據(jù)表中提供的數(shù)據(jù),確定日銷售量與時間的一次函數(shù)關(guān)系式;

(2)求該商品的日銷售金額的最大值并指出日銷售金額最大的一天是天中的第幾天,(日銷售金額每件的銷售價格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在平面直角坐標(biāo)系中,橢圓的長軸長,短軸長

(1)求橢圓的方程;

(2)記橢圓的左右頂點,分別過軸的垂線交直線于點 橢圓上位于軸上方的動點,直線,分別交直線于點

(i)當(dāng)直線的斜率為2時,求的面積;

(ii)求的最小值

查看答案和解析>>

同步練習(xí)冊答案