【題目】某種商品在天內(nèi)每件的銷(xiāo)售價(jià)格(元)與時(shí)間()(天)的函數(shù)關(guān)系滿(mǎn)足函數(shù),該商品在天內(nèi)日銷(xiāo)售量(件)與時(shí)間()(天)之間滿(mǎn)足一次函數(shù)關(guān)系如下表:
第天 | ||||
件 |
(1)根據(jù)表中提供的數(shù)據(jù),確定日銷(xiāo)售量與時(shí)間的一次函數(shù)關(guān)系式;
(2)求該商品的日銷(xiāo)售金額的最大值并指出日銷(xiāo)售金額最大的一天是天中的第幾天,(日銷(xiāo)售金額每件的銷(xiāo)售價(jià)格日銷(xiāo)售量)
【答案】(1)(,);(2)當(dāng)時(shí),日銷(xiāo)售金額最大,且最大值為元.
【解析】
試題(1)在解答時(shí),應(yīng)充分考慮自變量的范圍不同銷(xiāo)售的價(jià)格表達(dá)形式不同,分情況討論即可獲得日銷(xiāo)售金額y關(guān)于時(shí)間t的函數(shù)關(guān)系式;
(2)根據(jù)分段函數(shù)不同段上的表達(dá)式,分別求最大值最終取較大者分析即可獲得問(wèn)題解答.
試題解析:(1)設(shè)日銷(xiāo)售量與時(shí)間的一次函數(shù)關(guān)系式為:(),
由表格中數(shù)據(jù),得,
解得.故日銷(xiāo)售量與時(shí)間的一個(gè)函數(shù)關(guān)系式為:(,).
(2)由(1)可得商品的日銷(xiāo)售金額與時(shí)間的函數(shù)關(guān)系式滿(mǎn)足,即.
當(dāng)時(shí),,時(shí),函數(shù)取最大值.
當(dāng)時(shí),,時(shí),函數(shù)取最大值.
綜上可得,當(dāng)時(shí),日銷(xiāo)售金額最大,且最大值為元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 f(x)= sin2x﹣2sin2x,
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[﹣ , ],求f(x)的最大值及取得最大值時(shí)對(duì)應(yīng)的x的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)n輪,第n輪的點(diǎn)數(shù)分別記為xn , yn , 如果點(diǎn)數(shù)滿(mǎn)足xn< ,則認(rèn)為第n輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(Ⅰ)求第一輪闖關(guān)成功的概率;
(Ⅱ)如果第i輪闖關(guān)成功所獲的獎(jiǎng)金數(shù)f(i)=10000× (單位:元),求某人闖關(guān)獲得獎(jiǎng)金不超過(guò)1250元的概率;
(Ⅲ)如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量X,求x的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體中,,分別為 棱,上的點(diǎn). 已知下列判斷:
①平面;②在側(cè)面上 的正投影是面積為定值的三角形;③在平面內(nèi)總存在與平面平行的直線(xiàn);④平 面與平面所成的二面角(銳角)的大小與點(diǎn)的位置有關(guān),與點(diǎn)的位置無(wú)關(guān).
其中正確判斷的個(gè)數(shù)有
(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,直線(xiàn)l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左頂點(diǎn)A作直線(xiàn)m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線(xiàn)m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),則滿(mǎn)足f(f(a))=2f(a)的a的取值范圍是( )
A. B. [0,1]
C. D. [1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com