【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.
【答案】
(1)
解:由題意可得e= = ,
又圓O的方程為x2+y2=b2,
因?yàn)橹本l:x﹣y+2=0與圓O相切,
b= ,由a2=3c2=3(a2﹣b2),即a2=3.
所以橢圓C的方程為
(2)
解:由(1)得知圓的方程為x2+y2=2.A(﹣ ,0),直線m 的方程為:y=k(x+ ).
設(shè)R(x1,y1),S(x2,y2),由
得
,
由△=12k4﹣4(1+k2)(3k2﹣2)>0的﹣ <k< …①
因?yàn)椤鱋RS是鈍角三角形,∴ = = .
…②
由A、R、S三點(diǎn)不共線,知k≠0. ③
由①、②、③,得直線m的斜率k的取值范圍是(﹣ ,0)∪(0, )
【解析】(1)求得圓O的方程,運(yùn)用直線和相切的條件:d=r,求得b,再由離心率公式和a,b,c的關(guān)系,可得a,進(jìn)而得到橢圓方程;(2)先設(shè)出點(diǎn)R,S的坐標(biāo),利用△ORS是鈍角三角形,求得 =x1x2+y1y2<0,從而求出斜率k的取值范圍
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知t為實(shí)數(shù),函數(shù),其中
(1)若,求的取值范圍。
(2)當(dāng)時(shí),的圖象始終在的圖象的下方,求t的取值范圍;
(3)設(shè),當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,若的最小值為,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,為了保護(hù)環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到年生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律如下:①年固定生產(chǎn)成本為2萬(wàn)元;②每生產(chǎn)該型號(hào)空氣凈化器1百臺(tái),成本增加1萬(wàn)元;③年生產(chǎn)x百臺(tái)的銷(xiāo)售收入(萬(wàn)元).假定生產(chǎn)的該型號(hào)空氣凈化器都能賣(mài)出(利潤(rùn)=銷(xiāo)售收入﹣生產(chǎn)成本).
(1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?
(2)該產(chǎn)品生產(chǎn)多少臺(tái)時(shí),可使年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品在天內(nèi)每件的銷(xiāo)售價(jià)格(元)與時(shí)間()(天)的函數(shù)關(guān)系滿足函數(shù),該商品在天內(nèi)日銷(xiāo)售量(件)與時(shí)間()(天)之間滿足一次函數(shù)關(guān)系如下表:
第天 | ||||
件 |
(1)根據(jù)表中提供的數(shù)據(jù),確定日銷(xiāo)售量與時(shí)間的一次函數(shù)關(guān)系式;
(2)求該商品的日銷(xiāo)售金額的最大值并指出日銷(xiāo)售金額最大的一天是天中的第幾天,(日銷(xiāo)售金額每件的銷(xiāo)售價(jià)格日銷(xiāo)售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,,、分為、的中點(diǎn),.
()求證:平面平面.
()若,求四面體的體積.
()設(shè),若平面與平面所成銳二面角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)在平面直角坐標(biāo)系中,橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng).
(1)求橢圓的方程;
(2)記橢圓的左右頂點(diǎn),分別過(guò)作軸的垂線交直線于點(diǎn),為 橢圓上位于軸上方的動(dòng)點(diǎn),直線,分別交直線于點(diǎn),.
(i)當(dāng)直線的斜率為2時(shí),求的面積;
(ii)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|x2-4x+3|.
(1)作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其單調(diào)性;
(3)求集合M={m|使方程f(x)=m有四個(gè)不相等的實(shí)根}.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com