【題目】如圖, 平面, 平面, 是等邊三角形, ,

的中點(diǎn).

(1)求證:

(2)若直線與平面所成角的正切值為,求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:證明, ,推出平面,然后證明

;

以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過且與直線平行的直線為軸,建立空間直角坐標(biāo)系,說明為直線與平面所成角,設(shè),求出相關(guān)點(diǎn)的坐標(biāo),求出平面與平面的法向量,利用空間向量的數(shù)量積求解即可;

解析:(1)因?yàn)?/span>是等邊三角形, 的中點(diǎn),所.

因?yàn)?/span>平面 平面,所以.

因?yàn)?/span>,所以平面.

因?yàn)?/span>平面,所以.

(2)法1:以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過且與直線平行的直線為軸,建立空間直角坐標(biāo)系.

因?yàn)?/span>平面,所以為直線與平面所成角.

,即,從而.

不妨設(shè),又,則, .故, ,

, .于是

, ,設(shè)平面與平面的法向量分別為

, ,由,得,

所以.由

.所以.

所以.

所以二面角的余弦值為.

法2:因?yàn)?/span>平面,所以為直線與平面所成角.

由題意得,即,從而.

不妨設(shè),又, , .

由于平面 平面,則.

的中點(diǎn),連接,則.

中,

中,

中, ,

的中點(diǎn),連接 , ,

, . 所以為二面角的平面角.

中, ,在中, ,

中, ,因?yàn)?/span>,

所以.所以二面角的余弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動(dòng)漫影視制作公司長期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng).同時(shí)也為公司贏得豐厚的利潤,該公司2013年至2019年的年利潤關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤與年份代號(hào)線性相關(guān))

年份

2013

2014

2015

2016

2017

2018

2019

年份代號(hào)

1

2

3

4

5

6

7

年利潤(單位:億元)

29

33

36

44

48

52

59

1)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2020年的年利潤;

2)當(dāng)統(tǒng)計(jì)表中某年年利潤的實(shí)際值大于由(1)中線性回歸方程計(jì)算出該年利潤的估計(jì)值時(shí),稱該年為A級(jí)利潤年,否則稱為B級(jí)利潤年.現(xiàn)從2015年至2019年這5年中隨機(jī)抽取2年,求恰有1年為A級(jí)利潤年的概率.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線,動(dòng)點(diǎn)到點(diǎn)的距離比點(diǎn)的距離小1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)的直線與(1)中軌跡C相交于兩個(gè)不同的點(diǎn)M、N,若,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為, , ,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆寧夏育才中學(xué)高三上學(xué)期期末】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;

2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點(diǎn)是橢圓的頂點(diǎn).

(1)求的標(biāo)準(zhǔn)方程;

(2)上不同于的兩點(diǎn), 滿足,且直線相切,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別為雙曲線的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)P,使得=8a,則雙曲線的離心率的取值范圍是__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心坐標(biāo),直線被圓截得弦長為.

1)求圓的方程;

2)從圓外一點(diǎn)向圓引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(Ⅰ)估計(jì)該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的條件下,有關(guān)部門為此次參加問卷調(diào)査的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于μ可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于μ則只有1次;

(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:

贈(zèng)送話費(fèi)(單元:元)

10

20

概率

現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位元)為該市民參加.問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列和數(shù)學(xué)期望.

,

若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

同步練習(xí)冊(cè)答案