【題目】已知橢圓: 的離心率為,焦距為,拋物線: 的焦點是橢圓的頂點.
(1)求與的標(biāo)準(zhǔn)方程;
(2)上不同于的兩點, 滿足,且直線與相切,求的面積.
【答案】(1)..(2).
【解析】試題分析:⑴設(shè)橢圓的焦距為,依題意求出, ,由此求出橢圓的標(biāo)準(zhǔn)方程;又拋物線: 開口向上,故是橢圓的上頂點,由此能求出拋物線的標(biāo)準(zhǔn)方程;
⑵設(shè)直線的方程為,設(shè), ,則能得到, ,聯(lián)立
,得 ,;由此利用根的判別式,韋達定理,弦長公式,結(jié)合已知條件能求出的面積
解析:(1)設(shè)橢圓的焦距為,依題意有,
解得, ,故橢圓的標(biāo)準(zhǔn)方程為.
又拋物線: 開口向上,故是橢圓的上頂點,
,,故拋物線的標(biāo)準(zhǔn)方程為.
(2)顯然,直線的斜率存在.設(shè)直線的方程為,設(shè), ,則, ,
,
即
聯(lián)立,消去整理得, .
依題意, ,是方程的兩根, ,
, ,
將和代入得,
解得,( 不合題意,應(yīng)舍去)
聯(lián)立,消去整理得, ,
令,解得.
經(jīng)檢驗, , 符合要求.
此時, ,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為偶函數(shù),且當(dāng)時,.記.給出下列關(guān)于函數(shù)的說法:①當(dāng)時,;②函數(shù)為奇函數(shù);③函數(shù)在上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓于兩點,點在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點,且,當(dāng)變化時,證明: 為定值;
(3)當(dāng)變化時,直線與是否相交于定點?若是,請求出定點的坐標(biāo),并給予證明;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面, 平面, 是等邊三角形, ,
是的中點.
(1)求證: ;
(2)若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖.
(1)求頻率分布直方圖中a的值;
(2)估計總體中成績落在[50,60)中的學(xué)生人數(shù);
(3)根據(jù)頻率分布直方圖估計20名學(xué)生數(shù)學(xué)考試成績的眾數(shù),平均數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有四張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是,現(xiàn)從盒子中隨機抽取卡片,每張卡片被抽到的概率相等.
(1)若一次抽取三張卡片,求抽到的三張卡片上的數(shù)字之和大于的概率;
(2)若第一次抽一張卡片,放回后攪勻再抽取一張卡片,求兩次抽取中至少有一次抽到寫有數(shù)字的卡片的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓內(nèi)一定點,動圓過點且與圓內(nèi)切.記動圓圓心的軌跡為.
(Ⅰ)求軌跡方程;
(II)過點的動直線l交軌跡于M,N兩點,試問:在坐標(biāo)平面上是否存在一個定點Q,使得以線段MN為直徑的圓恒過點Q?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com