【題目】已知函數(shù)
(1)若,求證:
(2)若,恒有,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2)(﹣∞,0]
【解析】
(1)利用導(dǎo)數(shù)求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.
(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.
由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,
∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,
∴f(x)的極大值為,
∴當(dāng)x<0時,f(x)≤
(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,
令g(x)=,x>0,則g′(x),
令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,
且x→0+時,h(x)→﹣∞,h(1)=4e3﹣1>0,
∴存在x0∈(0,1),使得h(x0)=0,
∴當(dāng)x∈(0,x0)時,g′(x)<0,g(x)單調(diào)遞減,
當(dāng)x∈(x0,+∞)時,g′(x)>0,g(x)單調(diào)遞增,
∴g(x)在(0,+∞)上的最小值是g(x0)=,
∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,
令,
令
所以=1,,
∴g(x0)
∴實(shí)數(shù)k的取值范圍是(﹣∞,0].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項(xiàng)之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為2的正方體中,的中點(diǎn)是P,過點(diǎn)作與截面平行的截面,則截面的面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015秋?谛<壠谥校┲本l過點(diǎn)(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)是否存在自然數(shù),使得對于任意有恒成立?若存在,求出的最小值;
(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時,都有;③當(dāng),且時,都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):;;;.則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與圓交于不同的兩點(diǎn),而且滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com