【題目】如圖所示,在棱長為2的正方體中,的中點(diǎn)是P,過點(diǎn)作與截面平行的截面,則截面的面積為__________.

【答案】

【解析】

試題取AB、C1D1的中點(diǎn)M、N,連結(jié)A1M、MCCN、NA1.由已知得四邊形A1MCN是平行四邊形,連結(jié)MN,作A1H⊥MNH,由題意能求出截面的面積.

解:取AB、C1D1的中點(diǎn)MN,連結(jié)A1MMC、CNNA1

由于A1N∥PC1∥MCA1N=PC1=MC,

四邊形A1MCN是平行四邊形.

∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,

PC1∩BP=P,

平面A1MCN∥平面PBC1

因此,過A1點(diǎn)作與截面PBC1平行的截面是平行四邊形.

又連結(jié)MN,作A1H⊥MNH,由于A1M=A1N=,MN=2,

AH=

=,

=2=2

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,bR,關(guān)于x的方程(x2ax+1)(x2bx+1)=0的四個(gè)實(shí)根構(gòu)成以q為公比的等比數(shù)列,若q[,2],則ab的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點(diǎn),過點(diǎn)的直線交橢圓,兩點(diǎn),直線,分別交直線兩點(diǎn).

1)求橢圓的方程;

2)以線段為直徑的圓是否過定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠ADC=60°,側(cè)面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,MPB的中點(diǎn).

(1)求證:PA⊥平面CDM

(2)求二面角DMCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),

(I)證明:平面平面;

(II)若 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四個(gè)小球,分別寫有和、平、世、界四個(gè)字,有放回地從中任取一個(gè)小球,直到””兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用01,2,3代表和、平、世、界這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下24個(gè)隨機(jī)數(shù)組:

232 321 230 023 123 021 132 220 011 203 331 100

231 130 133 231 031 320 122 103 233 221 020 132

由此可以估計(jì),恰好第三次就停止的概率為_____

查看答案和解析>>

同步練習(xí)冊答案